
Properties of Random Samples

For the next two weeks, I will discuss some of the concepts of random sample which we use

very frequently. These are certainly not the central focus of this course, but it is extremely

important for all of us to know these concepts. We have to use these ideas throughout this

quarter. First we need to know what do we mean by a random sample.

Definition: The random variables X1, ..., Xn together is known as the random sample of

size n from the population f(x|θ) if X1, ..., Xn are mutually independent, or the joint density

of X1, ..., Xn is given by
∏n

i=1 f(xi|θ). We will commonly write as X1, ..., Xn
iid∼ f .

Example: X1, ..., Xn is a random sample from exponential(β). What is P (X1 ≤ a1, ..., Xn ≤

an).

Note that

P (X1 ≤ a1, ..., Xn ≤ an) =
n∏
i=1

P (Xi ≤ ai) =
n∏
i=1

P (Xi ≤ ai) =
n∏
i=1

∫
1

β
e−x/βdx =

n∏
i=1

(1− e−ai/β).

Remark: X1, ..., Xn are independent means g1(X1), ..., gn(Xn) are independent for any func-

tions g1, ..., gn. This means if X1, ..., Xn is a random sample of size n, g(X1), ..., g(Xn) is also

a random sample of size n for any function g.

Moral of the story is that in a random sample, the probability of any event related to

Xi has nothing to do with Xj for i 6= j. There are some important advantages of dealing

with random samples. By that I mean, some of the random variables derived from a random

sample have closed form distributions. Let us see an example. For example, consider the

random variable
∑n

i=1Xi.

Example: X1, X2, ..., Xn is a random sample from Pois(λ). What is P (X1 + · · ·+Xn = a)?
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Note that

P (X1 +X2 = m) =
m∑
l=0

P (X1 = l, X2 = m− l) =
m∑
l=0

P (X1 = l)P (X2 = m− l)

=
m∑
l=0

e−λλl

l!

e−λλm−l

(m− l)!
=
e−2λ(2λ)m

m!

1

2m

m∑
l=0

m!

l!(m− l)!
=
e−2λ(2λ)m

m!

Therefore, X1 +X2 ∼ Pois(2λ). Using induction we can show X1 + · · ·+Xn ∼ Pois(nλ).

Some Important definitions: E[Xk] =
∫
xkf(x|θ)dx, V ar(X) = E[X2]−E[X]2, Cov(Xi, Xj) =

E[XiXj] − E[Xi]E[Xj]. For any random sample E[XiXj] =
∫ ∫

xixjf(xi, xj|θ)dxidxj =∫
xif(xi|θ)

(∫
xjf(xj|θ)xj

)
dxi = E[Xi]E[Xj]. Therefore, Cov(Xi, Xj) = 0. The reverse is

not always true except for normal.

Moment generating function: What is the easiest way to find E[Xk] for any k. There

is a function known as moment generating function which is given by MX(t) = E[etX ] =∫
etxf(x|θ)dx. If MGF exists at a neighborhood of 0, then E[Xk] = dk

dtk
MX(t)|t=0. For a

random sample, MX̄(t) = [MX̄(t/n)]n.

Example: Let X ∼ N(µ, σ2). Let us compute MGF of X. For every t ∈ R,

E[etX ] =

∫
exp(tx)

1√
2πσ2

exp(−(x− µ)2

2σ2
)dx

=

∫
1√

2πσ2
exp

(
−1

2

[
x2

σ2
− 2x(

µ

σ2
+ t) +

µ2

σ2

])
dx

=

∫
1√

2πσ2
exp

(
− 1

2σ2

[
x− µ− tσ2

]2)
dx exp

(
(µ− tσ2)2

2σ2
− µ2

2σ2

)
= exp

(
(µ+ tσ2)2

2σ2
− µ2

2σ2

)
= exp

(
tµ+

1

2
t2σ2

)
.

Note that MGF is exists in a range of t. For normal distribution, the range is entire R.

However, MGF might not be valid for the entire R for many other distribution.

Exercise: Let X ∼ Gamma(α, β). Find the MGF of X.

Change of variable theorem: X1, ..., Xn random sample from a distribution f(x|θ). We

would like to find the joint distribution of (ψ1(X1, ..., Xn), ..., ψn(X1, ..., Xn)). Let u1 =
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ψ1(x1, .., xn),...,un = ψn(x1, ..., xn). Further x1 = H1(u1, ..., un),...,xn = Hn(u1, ..., un). Then

fU(u1, ..., un) =

[
n∏
i=1

f(Hi(u1, ..., un)|θ)

]
det

((
∂Hi(u1, ..., un)

∂uj

)n
i,j=1

)
.

example (Box-Muller transformation): Let U1, U2 ∼ U(0, 1). Show thatX1 =
√
−2 log(U1)cos(2πU2)

follows N(0,1). I will derive this in class. This will give you an idea about how to use the

change of variable theorem.

Exercise: To be specified in the class.

Some important results on random sample

Result 1: X1, ..., Xn be a random sample and E[g(X1)] and V ar(g(X1)) exist, thenE[
∑n

i=1 g(Xi)] =

nE[g(X1)], V ar(
∑n

i=1 g(Xi)) = nV ar(g(X1)).

Result 2: If X and Y are independent random variables with pdf fX(x) and fY (y) respec-

tively, then the pdf of Z = X + Y is fZ(z) =
∫
fX(w)fY (z − w)dw. Note that

P (Z ≤ z) = P (X + Y ≤ z) =

∫ ∞
−∞

P (w + Y ≤ z)fX(w)dw =

∫ ∞
−∞

P (Y ≤ z − w)fX(w)dw

=

∫ ∞
−∞

∫ z−w

−∞
fY (y)fX(w)dydw =

∫ ∞
−∞

∫ z

−∞
fY (y − w)fX(w)dydw =

∫ z

−∞

∫ ∞
−∞

fY (y − w)fX(w)dwdy.

Taking derivative w.r.t z on both sides fZ(z) =
∫
fX(w)fY (z − w)dw.

Result 4: If Z ∼ N(0, 1), then Z2 ∼ χ2
1. If Xi ∼ χ2

1 independently, then
∑
Xi ∼ χ2

n.

(Note that the definition of χ2
n is Gamma(n

2
, 1

2
)).

P (Z2 ≤ z) = P (−
√
z ≤ Z ≤

√
z) = 2P (0 < Z ≤

√
z) = 2

∫ √z
0

1√
2π

exp(−x
2

2
)dx.
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let w = x2, so that dx = dw
2
√
w

. This implies the above integral is

P (Z2 ≤ z) = 2

∫ z

0

1

2
√

2wπ
exp(−w

2
)dw =

∫ z

0

1√
2wπ

exp(−w
2

)dw.

Recall the density of Gamma(α, β) is f(x|α, β) = βαxα−1e−βx

Γ(α)
, 0 < x <∞.

Take derivative on both sides w.r.t. z that implies density of Z is χ2
1.

Result 3: Let X1, ..., Xn ∼ N(µ, σ2) and let, X̄ = 1
n

∑n
i=1Xi, S

2 = 1
n−1

∑n
i=1(Xi − X̄)2.

Then

(a) X̄ and S2 are independent.

(b) X̄ ∼ N(µ, σ2/n).

(c) (n− 1)S2/σ2 ∼ χ2
n−1.

Some of the important distributions which you will frequently en-

counter

Students t distribution: When X1, ..., Xn ∼ N(µ, σ2), if we know σ2 then the quantity

X̄−µ
σ/
√
n

can be used as a basis for inference on µ. We know the closed form distribution of

that quantity. However when σ is unknown, one instead use the quantity X̄−µ
S/
√
n
. It is very

intuitive, S2 is an unbiased estimator of σ2. Now,

X̄ − µ
S/
√
n

=
(X̄ − µ)/

√
σ2n√

(n− 1)S2/
√
n− 1

=
N(0, 1)√

χ2
n−1/
√
n− 1

.

We create a special class of distributions for handling such objects. In fact if U ∼ N(0, 1), V ∼

χ2
p and U, V independent, then U/

√
V/p follows a students t distribution with p degrees of

freedom, denoted by tp. By result 3, X̄−µ
S/
√
n

follows a tn−1. By the change of variable theorem,
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we can show that the density of tp is

f(t) =
Γ((p+ 1)/2)

Γ(p/2)

1
√
pπ

(1 + t2/p)−(p+1)/2, −∞ < t <∞.

For p = 1 no moments exist for t, but for p > 1 E[tp] = 0 and V ar(tp) = p
p−2

for p > 2.

F distribution

If U ∼ χ2
p, V ∼ χ2

q and U, V are independent, then U/p
V/q

is said to follow an Fp,q distribution.

We will see the significance of distribution much later. But let us see some of the interesting

facts about Fp,q distribution.

(a) X ∼ Fp,q implies 1/X ∼ Fq,p. (b) X ∼ tq, then X2 ∼ F1,q. (c) If X ∼ Fp,q, then

(p/q)X/(1 + (p/q)X) ∼ Beta(p/2, q/2).

Order Statistics: Suppose X1, ..., Xn be a random sample. The order statistics from

the random sample is given by

X(1) = min
1≤i≤n

Xi, ...., X(n) = max
1≤i≤n

Xi.

X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics from the random sample. The joint

distribution of the order statistics is given by

f(X(1), ..., X(n)|θ) = n!fX1(x1) · · · fXn(xn).

Marginal density of the j-th order statistic

fX(j)
(x) =

n!

((j − 1)!(n− j)!
fX(x)[FX(x)]j−1[1− FX(x)]n−j.
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example: X1, ..., Xn ∼ exp(λ). Then fX(x) = 1
λ

exp(−x/λ) and FX(x) = 1 − exp(−x/λ).

Thus fX(1),...,X(n)
(x1, ..., xn) = 1

λn
exp(−λ

∑n
i=1 xi), x1 < x2 < · · · < xn and fX(j)

(x) =

n!
((j−1)!(n−j)!

1
λ

exp(−x/λ)[1− exp(−x/λ)]j−1[exp(−x/λ)]n−j.

Joint density of (X(i), X(j)) is given by

fX(i),X(j)
(x1, x2) =

n!

((i− 1)!(j − i− 1)!(n− j)!
fX(x1)fX(x2)[FX(x1)]i−1[FX(x2)− FX(x1)]j−i−1

[1− FX(x2)]n−j, x1 ≤ x2.

example: X1, ..., X2
iid∼ exp(λ). Then

fX(i),X(j)
(x1, x2) =

n!

((i− 1)!(j − i− 1)!(n− j)!
[

1

λ2
exp(−(x1 + x2)/λ)][1− exp(−x1/λ)]i−1

[exp(−x1/λ)− exp(−x2/λ)]j−i−1[exp(−x2/λ)]n−j, x1 ≤ x2.

Some applications of order statistics.

• A electric device runs on 20 batteries and dies when 15th battery dies. If X1, ..., X20 are

the random variables corresponding to lifetimes of 20 batteries, the lifetime of electric

device is X(15).

• A policy of five family members are in an insurance policy which says that they will

receive a a huge money when two people die. Here if X1, ..., X5 are life spans of 5

people, we are interested in X(2).

0.1 Some convergence concepts

We always receive a sample of size n. What if the sample size becomes infinite? We will talk

about two concepts of convergence.

Convergence in Probability: A sequence X1, ... converges is probability to a random
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variable X if , for every ε > 0 limn→∞ P (|Xn −X| ≥ ε) = 0. For example take a sequence

Xn ∼ N(0, 1/n). Then P (|Xn| > ε) ≤ E(X2
n)

ε2
= 1

nε2
→ 0.

There are two important properties for the convergence in probability.

Properties of convergence in probability: (a) Xn converges to X in probability implies

g(Xn) converges to g(X) in probability, for any continuous fn. g.

(b) Xn converges to X and Yn converges to Y in prob. means Xn + Yn converges to X + Y

in prob.

Convergence in distribution: A sequence of random variables X1, ... is said to converge

in distribution to X, if limn→∞ FXn(x) = FX(x), at all points where FX(x) is continuous.

Convergence in probability implies convergence in distribution, reverse is not generally true

except when convergence is happening on constants.

example: Let X1, ..., Xn be random sample from U(0, 1), where does n(1−X(n)) converge

in distribution as n→∞?

Note that P (n(1−X(n)) < t) = P (X(n) > 1− t
n
) = 1−P (X(n) < 1− t

n
) = 1−(1− t

n
)n → 1−e−t.

Hence n(1−X(n)) converges in distribution to exp(1).

An important fact: Xn converges in probability implies Xn converges in distribution. The

reverse is not true in general. For example, take P (X = 0) = P (X = 1) = 1
2

and Xn = X

for all n. Then X and 1−X have the same distribution. Thus Xn converges in distribution

to 1−X. However, P (|Xn − (1−X)| > 1/2) = 1 for all n. Therefore Xn doesn’t converge

in probability to 1−X.

Referring to the question in the class. Why the definition of convergence in distribution

is limited to the continuity point of FX . Let Xn = 1
n

and X = 0. There is noting random in

Xn and X and as a deterministic sequence Xn converges to X. Now we expect that when a

deterministic sequence converges to a number, the sequence of random variables degenerate
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at this deterministic sequence should converge in distribution. Now

FXn(x) =

 0, if x < 1
n

1 x ≥ 1
n

Thus

lim
n→∞

FXn(x) =

 0, if x ≤ 0

1 x > 0

However,

FX(x) =

 0, if x < 0

1 x ≥ 0

In general Xn, Yn converge in distribution to X, Y respectively in distribution does not

mean Xn + Yn converges to X + Y . We need some additional condition provided by the

following theorem.

An important result bridging two types of convergence (Slutsky Thoerem): If

Xn → X in distribution and YN → a in probability, then (a)YnXn → aX in distribution, (b)

Yn +Xn → Y + a in distribution.

Most Important applications of the two types of convergence

Weak law of large number: Let X1, ..., Xn be iid random variables with EXi = µ,

V ar(Xi) = σ2 < ∞. Define X̄n = (1/n)
∑n

i=1Xi. Then, for every ε > 0, limn→∞ P (|X̄n −

µ| < ε) = 1.

Central limit theorem: Let X1, ..., Xn be a sequence of iid random variables whose mgf

exists in a nbd. of 0. Let EXi = µ, V ar(Xi)σ
2 > 0. Define X̄n = (1/n)

∑n
i=1Xi. Let

Gn(x) denote the cdf of
√
n(X̄n − µ)/σ. Then, for any x, −∞ < x < ∞, limn→∞Gn(x) =∫ x

−∞
1√
2π
e−y

2/2dy.

Central limit theorem is the single most important result in statistics. It talks about large

sample behaviour of the mean of a random sample and also justifies popular usage of normal

distribution in statistical world. What happens to functions of random variables. Delta
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method below is going to give that answer.

Delta Theorem: Let Yn be a sequence of random variables that satisfies
√
n(Yn − θ)

converges in distribution to N(0, σ2). For a given function g and a specific value of θ,

suppose that g′(θ) exists and is not 0. Then

√
n[g(Yn)− g(θ)]→ N(0, σ2[g′(θ)]2) in distribution.

If g′(θ) = 0 and g′′(θ) exists and nonzero, then

n[g(Yn)− g(θ)]→ σ2 g
′′(θ)

2
χ2

1 in distribution.

example: CLT gives us
√
n(X̄n − θ) → N(0, σ2). What is the limiting distribution of

√
n( 1

X̄n
− 1

θ
).

Exercise: 5.3, 5.4, 5.8, 5.13, 5.22, 5.23, 5.24, 5.44, 5.52 & 5.53 to check CLT.

Statistical Inferential Tools

Our subject is all about using a random sample to produce estimates of unknown parameters

in the model. From random sample we create a number of summary measures to understand

the behavior of the unknown distribution. For example, we calculate mean or variance to

understand central tendency or dispersion of the unknown distribution. While calculating

these statistics, we are essentially reducing our data. Question is how should we reduce data

optimally? In the next few classes we are going to see some principles.

Sufficiency

Definition 1: Let X = (X1, ..., Xn) and X ∼ F (x | θ). T (X) is known to be the sufficient

statistic for θ if the conditional distribution of X|T (X) is independent of θ. Intuitively,

T (X) contains the “same information” about θ that X contains. There is no “additional
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information” which is required to make proper inference on θ.

Example: Let X1, X2, X3
iid∼ Bernoulli(p). Density of the Bernoulli distribution is given by

f(X) = pX(1− p)1−X , X = 0, 1.

Claim: T (X1, X2, X3) =
∑3

i=1Xi is the sufficient statistics for p.

Proof P (X1 = x1, X2 = x2, X3 = x3|T (X1, X2, X3) = t) = 0, if
∑3

i=1 xi 6= t. If
∑3

i=1 xi = t,

P (X1 = x1, X2 = x2, X3 = x3|T (X1, X2, X3) = t)

=
P (X1 = x1, X2 = x2, X3 = x3, T (X1, X2, X3) = t)

P (T (X1, X2, X3) = t)

=
P (X1 = x1, X2 = x2, X3 = x3)

P (T (X1, X2, X3) = t)

=
P (X1 = x1)P (X2 = x2)P (X3 = x3)

P (T (X1, X2, X3) = t)
[AsX1, X2, X3 are iid]

=
p
∑3
i=1 xi(1− p)3−

∑3
i=1 xi(

3
t

)
pt(1− p)3−t

[X1, X2, X3 ∼ Bernouilli(p)⇒ T (X1, X2, X3) ∼ Bin(3, p)]

=
pt(1− p)3−t(
3
t

)
pt(1− p)3−t

=
1(
3
t

) .
Above is a rigorous proof the fact that T (X1, X2, X3) =

∑3
i=1Xi is sufficient statistics for p.

Let us examine that example with more details and try to make more intuition out of it. Let

us see the probability of occurring different values A1 = {000},A2 = {001, 010, 100},A3 =

{110, 011, 101},A4 = {111} are sets whose elements have the the same probability of oc-

currence. Note that, for every element of At, T (X1, X2, X3) = t. In other words, given

any random sample X = (X1, X2, X3) (more generally for X = (X1, ..., Xn)), it is enough

to know
∑
Xi = T (X) to write down the likelihood of p. Therefore, only information on

T (X) is sufficient to infer on p as opposed to the entire sample, hence the name “sufficient

statistics”.
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cases probability
000 (1− p)3

001 (1− p)2p
010 (1− p)p(1− p) = (1− p)2p
100 p(1− p)2

110 p2(1− p)
101 p(1− p)p = p2(1− p)
011 (1− p)p2

111 p3

Table 1: Probabilities of random samples

This is a more formal way to look into it for a general distribution. Note that Pθ(X =

x) = P (X = x|T (X) = T (x))Pθ(T (X) = T (x)). Therefore, only the distribution of T (X) is

contributing in the likelihood of θ. Hence T (X) is sufficient.

Question: How to find out sufficient statistics in a general set up ?

Theorem (Factorization Theorem): Let X have joint p.d.f (or p.m.f) fθ(X), where θ

is the unknown parameter. A statistic T (X) is sufficient statistic for θ if and only if fθ(X)

can be expressed as fθ(X) = g(T (X), θ)h(X), where h(X) is a function of X which is

independent of θ.

proof: We will see the proof in the discrete case only just to simplify things. Let us prove

the “only if” part first.

P [X = x] =
∑
t

P [X = x|T (X) = t]P [T (X) = t]

Now for only one t P [X = x|T (X) = t] is positive. Hence P [X = x] = P [X = x|T (X) =

t]P [T (X) = t] = h(x)g(T (x), θ). This proves the only if part. Now we will prove the “if

part”.

P [T (X) = t] =
∑
xAt

fθ(x) =
∑
xAt

g(T (x), θ)h(x) = g(t, θ)
∑
xAt

h(x).
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Thus

P [X = x|T (X) = t] =


g(t,θ)h(x)

g(t,θ)
∑

xAt
h(x)

, if x ∈ At

0 o.w.

Example 1: Recall the last example, X1, ..., Xn ∼ Bernoulli(p). Then

fp(X) =
n∏
i=1

pXi(1− p)1−Xi = p
∑n
i=1Xi(1− p)n−

∑n
i=1Xi =

(
p

1− p

)∑n
i=1Xi

(1− p)n.

Therefore h(X) = 1 and sufficient statistic is T (X) =
∑n

i=1 Xi.

Example 2: Suppose X1, ..., Xn ∼ Poisson(λ). Then

fλ(X) =
n∏
i=1

[
exp(−λ)λXi

Xi

]
=

exp(−nλ)λ
∑n
i=1Xi∏n

i=1 Xi

.

Therefore h(X) = 1∏n
i=1Xi

and T (X) =
∑n

i=1Xi with g(T (X), λ) = exp(−nλ)λ
∑n
i=1Xi .

Example 3: Suppose X1, ..., Xn ∼ N(µ, σ2), µ is an unknown parameter, σ2 known. Then

fµ(X) =
1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

(Xi − µ)2

)
=

[
1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

X2
i

)]

× exp

(
−nµ

2 − 2µ
∑n

i=1Xi

2σ2

)
.

Hence h(X) =
[

1

(
√

2πσ2)n
exp

(
− 1

2σ2

∑n
i=1X

2
i

)]
and T (X) =

∑n
i=1Xi.

Example 4: Suppose X1, ..., Xn ∼ N(µ, σ2), µ, σ2 both unknown parameters. Then

fµ,σ2(X) =
1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

(Xi − µ)2

)
=

[
1

(
√

2πσ2)n
exp

(
−
∑n

i=1 X
2
i

2σ2
+

2µ
∑n

i=1Xi

2σ2
− nµ2

2σ2

)]
.

Therefore, h(X) = 1 and T (X) = (
∑n

i=1 X
2
i ,
∑n

i=1Xi).
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Example 5: Suppose X1, ..., Xn ∼ U(0, θ). Then

fθ(X) =
1

θn
I(0 < X1 < θ, ..., 0 < Xn < θ) =

1

θn
I(X(n) < θ)I(X(1) > 0),

where X(n), X(1) are biggest and smallest order statistics from X1, ..., Xn. Therefore, T (X) =

X(n).

Example 6: Suppose X1, ..., Xn ∼ U(θ1, θ2). Then

fθ(X) =
1

(θ2 − θ1)n
I(θ1 < X1 < θ2, ..., θ1 < Xn < θ2) =

1

(θ2 − θ1)n
I(X(n) < θ2)I(X(1) > θ1),

where X(n), X(1) are biggest and smallest order statistics from X1, ..., Xn. Therefore, T (X) =

(X(1), X(n)).

Some Important Facts:

(a) T (X) = (X1, ..., Xn), i.e. the full sample is always sufficient for the unknown parameter.

(b) If X1, ..., Xn
iid∼ fθ(x) then, f(X) =

n∏
i=1

fθ(Xi) =
n∏
i=1

fθ(X(i)). This means order statistics

X(1) ≤ · · · ≤ X(n) is always sufficient for θ. Of course this is not a big reduction, but with

so little information you can’t reduce sample much without losing any “information”.

(c) Any one to one function of a sufficient statistics is also sufficient.

• In examples 1,2,3, X̄ =
∑n
i=1Xi
n

is also sufficient, being a one-one function of∑n
i=1 Xi.

• In example 4, (X̄, S2) = K(
∑n

i=1Xi,
∑n

i=1X
2
i ), where K(z1, z2) = (z1/n, z2/n −

z2
1/n

2) which is a one to one function. Therefore (X̄, S2) is a sufficient statistics.

13



In general, you can create a lot of sufficient statistics for a problem. Let us go back to the

Bernoulli example we started with. X1, X2, X3 ∼ Bernoulli(p). We have seen
∑3

i=1 Xi is a

sufficient statistic. We also know from (a) that the full sample is sufficient statistic. Note

that

fp(X) = p
∑3
i=1Xi(1− p)3−

∑3
i=1Xi = p

∑2
i=1Xi+X3(1− p)3−

∑2
i=1Xi−X3 .

Therefore (
∑2

i=1Xi, X3) is a sufficient statistic. Also you will be able to find many other

sufficient statistics. Any sufficient statistic is providing summary of the dataset that one can

deal with without losing any information from the entire data. Therefore we are more inter-

ested in knowing the coarsest summary of the data without losing any information. Below

is a concept that explains as to how far we can proceed in summarizing the data without

losing any information contained in it.

Definition (Minimal Sufficiency): A statistic T (X) is minimal sufficient if (a) it is

sufficient, and (b) it is function of every other sufficient statistic.

Consider the good old example of Bernoulli. T1(X) = (X1, X2, X3), T2(X) = (
∑2

i=1Xi, X3),

T3(X) =
∑3

i=1Xi are all sufficient statistics foo p, as we have seen earlier. However T2 is

a function of T1 and T3 is a function of both T1 and T2. Further T1 is one-dimensional and

you can’t make anything lower dimensional than that. So, T1 has to be a minimal sufficient

statistic for p.

Question: How to find minimal sufficient statistics in more general set ups.

Theorem (Minimal Sufficiency): Let fθ(X) be the p.d.f (or, p.m.f) of X. Suppose

there exists a statistic T s.t. for any two realizations x, y of the sample T (x) = T (y) if and

only if fθ(x) = kfθ(y) where k is independent of θ, then T is a minimal sufficient statistic of θ.

14



Example 7: Lets look at our favorite example, X1, X2, X3 ∼ Bernoulli(p). We have

argued T3 is minimal sufficient from a different angle. Now lets look at it in the light of this

theorem.

fp(x)

fp(y)
=
p
∑3
i=1 xi(1− p)3−

∑3
i=1 xi

p
∑3
i=1 yi(1− p)3−

∑3
i=1 yi

=

(
p

1− p

)∑3
i=1 xi−

∑3
i=1 yi

.

This ratio is constant if and only if
∑3

i=1 xi =
∑3

i=1 yi. Hence T3(X) =
∑3

i=1 Xi is the

minimal sufficient statistic. Why T2(X) = (
∑2

i=1 Xi, X3) is not the minimal sufficient. As(
p

1−p

)∑3
i=1 xi−

∑3
i=1 yi

can be a constant even if
∑2

i=1 xi 6=
∑2

i=1 yi.

Example 8: Suppose X1, ..., Xn ∼ N(µ, σ2), µ, σ2 both unknown parameters. Then

fµ,σ2(x)

fµ,σ2(y)
=

exp
(
− 1

2σ2 [
∑n

i=1 x
2
i − 2µ

∑n
i=1 xi + nµ2]

)
exp

(
− 1

2σ2 [
∑n

i=1 y
2
i − 2µ

∑n
i=1 yi + nµ2]

)
= exp

(
− 1

2σ2

[
(
n∑
i=1

x2
i −

n∑
i=1

y2
i )− 2µ(

n∑
i=1

xi −
n∑
i=1

yi)

])
.

This ratio is constant if and only if
∑n

i=1 x
2
i =

∑n
i=1 y

2
i and

∑n
i=1 xi =

∑n
i=1 yi. Therefore

T (X) = (
∑n

i=1X
2
i ,
∑n

i=1Xi) is the minimal sufficient statistics.

Example 9: Suppose X1, ..., Xn ∼ U(θ, θ + 1), −∞ < θ < ∞. We have seen the joint

pdf is

fθ(x)

fθ(y)
=
I(θ < x1 < θ + 1, ..., θ < xn < θ + 1)

I(θ < y1 < θ + 1, ..., θ < yn < θ + 1)
=
I(x(1) > θ, x(n) − 1 < θ)

I(y(1) > θ, y(n) − 1 < θ)
.

The ratio is constant if and only if (x(1), x(n)) = (y(1), y(n)). Hence the minimal sufficient

statistics is (X(1), X(n)).

Remark: Any one to one function of a minimal sufficient statistics is also minimal sufficient.
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Minimal sufficient statistic is not unique.

Ancillary Statistics

In the previous subsection we see sufficient statistics which are summarization of the sam-

ple without losing any “information”. Sufficient statistics are something which contain all

information about θ. We are now going to introduce a different sort of statistics.

Definition (Ancillary Statistic): A statistics whose distribution does not depend on the

unknown parameter θ is known as an ancillary statistic.

It seems to us that ancillary statistics has nothing to do with θ. Then why are we interested

in it? We will see later that ancillary statistics sometimes can give information for inference

about θ.

Location family ancillary statistics: Let X1, ..., Xn ∼ F (x − θ), −∞ < θ < ∞. This

implies Zi = Xi−θ ∼ F (x). Consider the distribution of R = X(n)−X(1), the range statistic.

Now

Pθ(R ≤ r) = Pθ(X(n) −X(1) ≤ r) = Pθ(max
i

(Zi + θ)−min
i

(Zi + θ) ≤ r) = Pθ(Z(n) − Z(1) + θ − θ ≤ r).

Last probability doesn’t depend on θ. So R is an ancillary statistics for the location family.

Example 10: X1, ..., Xn ∼ U(θ, θ+1). This implies Xi−θ ∼ U(0, 1). Thus R = X(n)−X(1)

is an ancillary statistics.

Example 11: X1, ..., Xn ∼ N(µ, σ2), σ2 known. This implies Xi − µ ∼ N(0, σ2). Thus

R = X(n) −X(1) is an ancillary statistics.

Scale family ancillary statistics: Let X1, ..., Xn ∼ F (x/σ), σ > 0. Any statistic that

depends on the sample only through the n − 1 values X1/Xn,...,Xn−1/Xn is an ancillary
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statistic.

Note that Zi = Xi/σ ∼ F (x). Therefore the joint CDF of X1/Xn, ..., Xn−1/Xn is the

same as the joint CDF of Z1/Zn, ..., Zn−1/Zn. Hence any function of X1/Xn,...,Xn−1/Xn has

distribution free of θ.

Example 12: X1, ..., Xn ∼ N(0, σ2), then Xi/σ ∼ N(0, 1). Hence it is a scale family with

ancillary statistics as above.

As was said earlier, ancillary statistics together with some other statistic provide important

information about θ. For example, we have seen in example 9 that the minimal sufficient

statistic is (X(1), X(n)). By the property that any one to one function of a minimal sufficient

statistic is also minimal sufficient means (X(1) − X(n),
X(1)+X(n)

2
) is also minimal sufficient.

However we have seen in this example X(1)−X(2) is an ancillary statistic. Therefore, ancillary

statistic although gives no information on θ alone can give information on θ together with

some other statistic. Below we are going to give more insight on this phenomenon.

Example 13: Let X1, X2 be iid drawn from a distribution which has p.m.f

P (X = θ) = P (X = θ + 1) = P (X = θ + 2) =
1

3
,

where θ is an integer and unknown. Here also the minimal sufficient statistics is (X(1), X(2))

and again by a one-one transformation (X(1) −X(n),
X(1)+X(n)

2
) is minimal sufficient. Let me

denote the minimal sufficient statistic by (r,m) and let m be an integer. Given only m, θ

can be any of the three values θ = m,m− 1,m− 2. However, if we additionally know r = 2

then it can be concluded that X(1) = θ,X(2) = θ+ 2. Thus m = θ+ 1⇒ θ = m− 1. Thus r

also provides crucial information for the inference on θ.

This example also proves the fact that ancillary statistics, although contains no informa-

tion about θ in itself, is not independent of the minimal sufficient statistics. We need some

additional conditions to hold for a minimal sufficient statistic to be independent of ancillary
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statistics. A description of situations in which this occurs relies on the following definition.

Definition (Complete Statistic): Let fθ(t) be a family of pdfs (or pmfs) for a statis-

tic T (X). The family of distributions is called complete if Eθ(g(T )) = 0 for all θ implies

Pθ(g(T ) = 0) = 1 for all θ. Equivalently, T (X) is called a complete statistic.

Note that completeness is a stronger definition than minimal sufficiency. Indeed

Theorem: If a minimal sufficient statistic exists, then any complete sufficient statistic is

also a minimal sufficient statistic.

Proof Let T be a complete sufficient statistic and S is minimal sufficient. S is a function of

T as S is minimal sufficient. Now E[T |S] = g(S)⇒ E[(T −g(S))|S] = 0⇒ E[T −g(S)] = 0.

Given that S is a function of T , by completeness we have T = g(S). Therefore T is minimal

sufficient.

Notice that completeness is a property for a family of distributions, not of a particular

distribution. Let us discuss a few examples of complete statistics. Later we will provide

complete sufficient statistics for a broad class of distribution.

example: Suppose T ∼ Bin(n, p) and let g be a function s.t. Ep[g(T )] = 0. This implies

for all p

0 =
n∑
k=0

g(k)

(
n

k

)
pk(1− p)n−k = (1− p)n

n∑
k=0

g(k)

(
n

k

)(
p

1− p

)k
.

Thus a polynomial f(t) =
∑n

k=0 g(k)
(
n
k

)
tk is identically zero for all t. This means every

coefficient is zero, i.e. g(k) = 0 for all k. Hence g = 0.

example: X1, ..., Xn

∼
iid U(0, θ), 0 < θ <∞. Let T (X1, .., Xn) = maxiXi be a statistic. We
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will show it is a complete sufficient statistics for θ. Note that

P (T ≤ t) = P (X1 < t, ..., Xn < t) = P (X1 < t) · · ·P (Xn < t) = tnθ−n, 0 < t < θ

= 1 if t > θ

= 0 if t < 0.

Therefore the density of T is given by f(t|θ) = ntn−1θ−n, 0 < t < θ. Suppose g be a fn. s.t.

Eθ[g(T )] = 0 for all θ. Then

0 =
d

dθ
Eθ[g(T )] =

d

dθ

∫ θ

0

g(t)ntn−1θ−ndt = g(θ)nθn−1θ−n.

Since this is true for all θ, it implies that g = 0.

We are now in a position to discuss when a minimal sufficient statistic is independent of

an ancillary statistic.

Basu’s Theorem: If T (X) is a complete and sufficient statistic, then T (X) is independent

of any ancillary statistic.

Proof (Only for the simple discrete case): Let S(X) be any ancillary statistic. Then

Pθ(S(X) = s) does not depend on θ. Since T (X) is a sufficient statistic hence Pθ(S(X) =

s|T (X) = t) = Pθ(X ∈ {x : S(x) = s}|T (X) = t) is independent of θ. Now

Pθ(S(X) = s) =
∑
t

P (S(X) = s|T (X) = t)Pθ(T (X) = t). (1)

Furthermore since P (S(X) = s) =
∑

t P (S(X) = s)Pθ(T (X) = t), using (1) we have for

g(t) = P (S(X) = s|T (X) = t)− P (S(X) = s),

Eθ[g(T )] = 0 for all θ. Now using completeness of T we obtain P (S(X) = s|T (X) =
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t)− P (S(X) = s) = 0. This proves that T (X) and S(X) are independent.

Basu’s theorem sometimes turns out to be an extremely useful technique. Consider the

following classic examples.

Example 13: Consider X1, ..., Xn ∼ exp(θ), need to find Eθ

[
Xn∑n
i=1Xi

]
. Note that fθ(x) =

1
θ

exp(−x/θ). Therefore X/θ ∼ exp(1) implying that it is scale family. By a previous

example, g(x) = Xn∑n
i=1Xi

= 1∑n
i=1

Xi
Xn

is an ancillary statistic. It is easy to show that T (X) =∑n
i=1Xi is a complete sufficient statistic. Therefore, T (X) and g(X) are independent. Thus

θ = Eθ[Xn] = Eθ[g(X)T (X)] = Eθ[g(X)]Eθ[T (X)] = Eθ[g(X)]nθ.

Hence Eθ[g(X)] = n−1.

Exponential Family

A one parameter exponential family density is given by fθ(x) = h(x)c(θ) exp (w(θ)t(x)).

Exercise: Show how Bin(p), Pois(λ) is a one parameter exponential family.

Now note that

0 =
d

dθ

∫
h(x)c(θ) exp (w(θ)t(x)) dθ

=

∫
h(x) [c′(θ) exp (w(θ)t(x)) + c(θ)w′(θ)t(x) exp (w(θ)t(x))] dθ

=
c′(θ)

c(θ)
+ w′(θ)E[t(X)].

E[t(X)] = − c′(θ)
w′(θ)c(θ)

. Taking derivative one more time we can calculate E[t(X)2], V ar(t(X)).

Similarly one encounters multi-parameter exponential family. A multi-parameter expo-

nential family has density

fθ(x) = h(x)c(θ) exp

(
k∑
i=1

wi(θ)ti(x)

)
.
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Clearly by factorization theorem, (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj)) is sufficient and by the next

theorem it is minimal sufficient.

Remark: It can also be shown that (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj)) is also complete sufficient

statistic if {(w1(θ), ..., wk(θ)) : θ ∈ θ} contains an open set in Rk.

Result borrowed from the Fourier Transformation:

If
∫∞
−∞ · · ·

∫∞
−∞ g(y1, ..., yk) exp(t1y1+· · ·+tkyk)dy1 · · · dyk = 0 for ai < ti < bi for all i = 1, ..., k

then g = 0.

We are going to borrow this result to prove the remark. Note that T (X) = (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj))

is a sufficient statistics for θ. Now E[g(T (X))] = 0 for all θ implies

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(
n∑
j=1

t1(Xj), ...,
n∑
j=1

tk(Xj)) exp(w1(θ)
n∑
j=1

t1(Xj) + · · ·+ wk(θ)
n∑
j=1

tk(Xj)) = 0.

(2)

Now {(w1(θ), ..., wk(θ)) : θ ∈ θ} contains an open set in Rk means it there exist intervals

[ai, bi] in every dimension so that ai < wi(θ) < bi for which (2) holds. By the previous result

we have g = 0.

This if condition is important. For example if X1, ..., Xn ∼ N(θ, θ2). We can’t apply the

theorem here.

Likelihood Principle

The last topic of this chapter is another principle known as the “likelihood principle”. Like-

lihood principle tells us that all the inferences on the parameter should be only based on the

likelihood function. What is a likelihood function? Below we give definition of the likelihood

function.

Definition (Likelihood function): Let fθ(x) be the joint pdf or pmf of the sample

X = (X1, ..., Xn). Then given that X = x is observed, the function of θ defined by
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L(θ|x) = fθ(x) is called the likelihood function.

Likelihood Principle: If x and y are two sample points such that L(θ|x) is proportional

to L(θ|y), that is there exists a constant C(x,y) such that

L(θ|x) = C(x,y)L(θ|y), for all θ,

then the conclusion drawn from x and y should be identical. Note that the constant C(x,y)

may be different for different (x,y) pair, but it does not depend on θ.

Likelihood principle says inference must be fully based on the likelihood. If for two values

θ1, θ2 of θ we have L(θ2|x) = 3L(θ1|x), then θ2 is thrice “probable” as a value of θ. Further

if likelihood principle is true then L(θ2|y) = 3L(θ2|y). Thus whether we observe x,y we

conclude that θ2 is thrice more likely as a value of θ than θ1. According to likelihood principle

the most likely value of θ is the one that maximizes likelihood. This is how likelihood principle

gives rise to the “maximum likelihood estimator”.

However, likelihood principle is quite controversial and it contradicts frequentist inference

in many example. I will show you a very popular one.

example: Let X be the number of success in twelve Bernoulli trial with success prob. θ.

Then X ∼ Bin(12, θ). Suppose we observe 3 successes. Then the likelihood of θ is

L(θ|X = 3) =

(
12

3

)
θ3(1− θ)9.

Let Y be the number of trials required to have 3 successes. Y ∼ NegBin(3, θ). The likelihood

of θ here is

L(θ|Y = 12) =

(
11

2

)
θ3(1− θ)9.

Since the two likelihoods are merely proportional to each other for all θ, therefore likelihood
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principle says we should have the same inference on θ. However, it has been shown that H0 :

θ = 1
2

vs. H1 : θ > 1
2

has p-value of 0.07 in the first case, while 0.03 in the second case. We

will describe more when we study hypothesis testing. Therefore, with standard frequentist

testing procedure, we draw two different conclusions. Therefore, frequentist procedure has

contradiction with the likelihood principle.

Exercise: 6.2, 6.3, 6.5, 6.6, 6.9, 6.10, 6.13, 6.14, 6.16, 6.20, 6.22, 6.30.

1 Techniques to evaluate estimators

In the previous section we studied a few concepts on sufficiency, minimal sufficiency and

completeness. Those are tools to evaluate “how good” is the data reduction achieved by an

estimator and how much information is lost, if any. In this section, we will use these tools

(and introduce some other) to create “optimal” point estimator. First we need a metric

under which we can evaluate any estimator.

Definition (Mean Squared Error): If τ(θ) 6= 0 is a function of θ and T (X) be an

estimator used to estimate τ(θ), then the mean squared error (MSE) of T (X) is given by

Eθ(T (X)− τ(θ))2. Note that,

Eθ(T (X)− τ(θ))2 = Eθ(T (X)− Eθ(T (X)) + Eθ(T (X))− τ(θ))2

= Eθ(T (X)− Eθ(T (X)))2 + 2Eθ((T (X)− Eθ(T (X)))(Eθ(T (X))− τ(θ))) + Eθ(Eθ(T (X))− τ(θ))2

= Eθ(T (X)− Eθ(T (X)))2 + Eθ(Eθ(T (X))− τ(θ))2

= V arθ(T (X)) +Biasθ(T (X))2.

Given any function of θ (say τ(θ)), we would ideally like to obtain an estimator T (X) that

has the lowest MSE, uniformly over all θ. However, this is not possible to achieve. Consider

the estimator T (X) = 10, which is a terrible as an estimator, but when θ = 10, it gives

MSE = 0. Therefore it is not possible to achieve an estimator which is uniformly best across
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θ over all other estimators, in terms of MSE. We restrict the class of estimators among which

we are going to find out estimator with the best MSE. Let

Cτ = {T : Eθ(T (X)) = τ(θ)}

be a class of estimators. Clearly T ∈ Cτ ⇒ Biasθ(T (X)) = 0. We call the class Cτ as

the class of all unbiased estimators of τ(θ). Our aim is to to find an estimator T (X) of

τ(θ) which satisfies the property that given any other unbiased estimator W (X) of τ(θ),

MSEθ(W ) ≥ MSEθ(T ) for all θ. Since, for unbiased estimators MSEθ(T ) = V arθ(T ), it

amounts to finding out an unbiased estimator T s.t V arθ(W ) ≥ V arθ(T ) for all θ. Such an

estimator T is known as the uniform minimum variance unbiased estimator (UMVUE) of

τ(θ). We will see how to find UMVUE for different problems. While doing so, we are going

to use concepts which have been introduced earlier. But first we should answer the question

if such a UMVUE is unique.

Theorem (Uniqueness of UMVUE) If T (X) is the best unbiased estimator of τ(θ), then

T (X) is unique.

Proof: SupposeW (X) be another best unbiased estimator and consider T ∗(X) = T (X)+W (X)
2

.

Note that E[T ∗(X)] = τ(θ), hence T ∗ is unbiased. Also

V arθ(T
∗) = V arθ(

T +W

2
) =

1

4
V arθ(T ) +

1

4
V arθ(W ) +

1

2
Covθ(T,W )

≤ V arθ(
T +W

2
) =

1

4
V arθ(T ) +

1

4
V arθ(W ) +

1

2
[V arθ(T )V arθ(W )]1/2

= V arθ(T ),

where the second step follows from Cauchy-Schwartz inequality and last step follows from

the fact that V arθ(T ) = V arθ(W ) for all θ. If the inequality is strict, then it clearly

gives a contradiction of the fact that T is UMVUE. If the inequality is an equality then

W = a(θ)T + b(θ), by the equality of Cauchy-Schwartz. Thus Covθ(T,W ) = a(θ)V arθ(T ).

24



But, step 2 is an equality now, hence Covθ(T,W ) = V arθ(T ) implying that a(θ) = 1. Now

Eθ(T ) = Eθ(W ) implies b(θ) = 0. Hence T = W .

To see when an unbiased estimator is best unbiased, we want to see how can we improve

upon a given unbiased estimator. Suppose T (X) is an unbiased estimator of τ(θ) and U(X)

is an unbiased estimator of 0, i.e. Eθ(T + aU) = τ(θ), this is also unbiased. Now

V arθ(T + aU) = V arθ(T ) + 2aCovθ(T, U) + a2V arθ(U).

Now if for some θ0, Covθ0(T, U) < 0, then we can make 2aCovθ0(T, U) + a2V arθ0(U) < 0 by

choosing a ∈ (0,−2Covθ0(T, U)/V arθ0(U)). Hence T + aU will be a better estimator at θ0

and T cannot be UMVUE. Similarly we can show that if Covθ0(T, U) > 0 then also T cannot

be best unbiased. In fact this observation characterizes an important property of UMVUE.

Theorem: W (X) is the UMVUE for τ(θ) if and only if W is uncorrelated with all un-

biased estimators of 0.

proof: The above argument shows that if W is the UMVUE it must satisfy Covθ(W,U) = 0

for all θ for all unbiased estimator U of 0. Now assume W is uncorrelated to all unbiased

estimators of 0 and let W ′ be any other unbiased estimator of τ(θ). This implies that W is

uncorrelated to W −W ′. Hence

V arθ(W ) = V arθ(W
′) + V arθ(W −W ′).

Hence W is better than W ′.

Note that this result is quite difficult to use in practice. However, it can be used as a

negative result, i.e. if you like to show that some estimator is not UMVUE, just show that

it is correlated to one unbiased estimator of 0.

Example: X ∼ U(θ, θ+ 1). Then E(X − 1
2
) = θ, i.e. X − 1

2
is unbiased. If h is an unbiased
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estimator of 0, then
∫ θ+1

θ
h(x)dx = 0⇒ h(θ + 1)− h(θ) = 0 for all θ. Now h(x) = sin(2πx)

satisfies this and Covθ(X − 1
2
, sin(2πX)) = − cos(2πθ)

2π
6= 0.

The above results are all giving characterizations of UMVUE. Now we will move onto

the task of constructing UMVUE in different problems.

Rao-Blackwell Theorem: Let W be any unbiased estimator of θ. Let T be a sufficient

statistic for θ and φ(T ) = E[W |T ]. Then

(i) φ(T ) is an unbiased estimator of θ.

(ii) V ar(φ(T )) ≤ V ar(W ), with equality holding if and only if φ(T ) = W with prob. 1.

Proof First of all φ(T ) is a statistic (i.e. free of θ) as T is a sufficient statistic. Now,

E(φ(T )) = E[E[W |T ]] = E[W ] = θ. So φ(T ) is unbiased. Also V ar(W ) = V ar(E(W |T )) +

E(V ar(W |T )) = V ar(φ(T )) + E(V ar(W |T )) ≥ V ar(φ(T )).

Example 14: X1, X2, X3 ∼ Bernoulli(p). Lets start with any unbiased estimator, say

W = (X1 +X2)/2. Clearly E(W ) = p, i.e. W is unbiased. We know T =
∑3

i=1 Xi is a suffi-

cient statistic for p. Then φ(T ) = E[W |T ] = T/3 by symmetry. Now, V ar(W ) = p(1−p)/2,

while V ar(φ(T )) = p(1− p)/3.

Given any unbiased estimator, Rao-Blackwell theorem provides a way to improve its MSE

and we proceed towards achieving a UMVUE. But how much conditioning is needed? Is there

any sufficient statistic with which conditioning provides UMVUE. Indeed it is achieved by a

complete sufficient statistics as below.

Theorem (Lehman-Scheffe): Suppose T is complete and sufficient and there exists a

function φ(T ) of T s.t. E[φ(T )] = ψ(θ). Then φ(T ) is UMVUE for ψ(θ).

proof: Let T1 be any other unbiased estimator of ψ(θ). Consider φ1(T ) = E[T1|T ], this is a

statistic and by Rao-Blackwell we have var(φ1(T )) ≤ var(T1). Now E[φ1(T )] = E[φ(T )] =

ψ(θ). By completeness of T , we have φ1(T ) = φ(T ) w.p. 1 for all θ. Hence φ(T ) is the

UMVUE.
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The above theorem gives us a reasonably easy way to find a UMVUE for ψ(θ). We have

two tasks, (a) find a complete sufficient statistics for θ. For exponential family we already

know how to find that, (b) find an unbiased estimator of ψ(θ) as a function of the complete

sufficient statistics. We will see some examples.

Example: Consider X1, ..., Xn ∼ Bernoulli(p). We have already seen that
∑n

i=1Xi is a

complete sufficient statistic. Therefore, T =
∑n

i=1 Xi is UMVUE for p. What is the UMVUE

for p2? Note that T =
∑n

i=1Xi ∼ Bin(n, p). Thus,

E[T (T − 1)] = E[T 2]− E[T ] = V ar(T ) + E[T ]2 − E[T ] = np(1− p) + n2p2 − np = n(n− 1)p2

implying that T (T−1)
n(n−1)

is the UMVUE for p2.

Example: Consider X1, ..., Xn ∼ N(µ, σ2). We already know, (
∑n

i=1Xi,
∑n

i=1X
2
i ) is

complete sufficient. E(
∑n

i=1Xi/n) = µ. Thus
∑n

i=1Xi/n is UMVUE FOR µ. Also

E[
∑n

i=1 X
2
i /n] = µ2 + σ2. Hence

∑n
i=1X

2
i /n is UMVUE for µ2 + σ2.

There is also another technique to find out UMVUE for ψ(θ) using Lehman-Scheffe and

Rao-Blackwell theorem. (a) First find out any unbiased estimator H(X) of ψ(θ), (b) iden-

tify sufficient statistics for θ, (c) Compute E[H(X)|T ] = φ(T ). By Rao Blackwell theorem

φ(T ) is an unbiased estimator of ψ(θ) and a function of the complete sufficient statistics T .

Therefore φ(T ) is UMVUE for ψ(θ). Let us see an example.

Example: X1, ..., Xn ∼ Pois(λ). What is the UMVUE of P (X = 0) = e−λ?

Clearly E[I(X1 = 0)] = P (X1 = 0) = e−λ. We already know T =
∑
Xi ∼ Pois(nλ) is

sufficient for λ. Now

E[I(X1 = 0)|
n∑
i=1

Xi = t] = P (X1 = 0|
n∑
i=1

Xi = t) =
P (X1 = 0,

∑n
i=2 Xi = t)

P (
∑n

i=1Xi = t)
=

e−nλ[(n−1)λ]t

t!
e−nλ[nλ]t

t!

=

(
1− 1

n

)t
.

(
1− 1

n

)∑n
i=1Xi is the UMVUE for e−λ.

Now we are going to see another result that gives us lower bound on the variance of any

unbiased estimator. The theorem is popularly known as the Cramer-Rao Inequality. But

27



before that, let us discuss a few concepts which are necessary.

Let λ(x) = log f(x|θ). We call uθ(x) = ∂ log(fθ(x))
∂θ

= score function. Note that

Eθ(uθ(x)) = 0. This can be seen using the fact that

0 =
δ

δθ

∫
fθ(x)dx =

∫
uθ(x)dx = Eθ(uθ(X)) = 0.

We define, Fisher information as I(θ) = E[uθ(X)2] = V ar(uθ(X)). Taking another derivative

w.r.t θ we obtain E[uθ(X)2] = −E[u′θ(X)]. This is true for scalar θ as

0 =
d

dθ

∫
uθfθ(x)dx =

∫
u′θ(x)fθ(x)dx+

∫
uθ(x)

d

dθ
fθ(x)dx

= Eθ(u
′
θ(X)) + Eθ(uθ(X)2).

Information for location family: If X ∼ f(x − θ), f(x) > 0 for all x, then I(θ) =∫∞
−∞

[f ′(x)]2

f(x)
dx.

proof: Note that uθ(x) = δ
δθ

log(f(x−θ)) = −f ′(x−θ). Thus I(θ) =
∫∞
−∞ uθ(x)2f(x−θ)dx =∫∞

−∞
[f ′(x−θ)]2
f(x−θ) dx =

∫∞
−∞

[f ′(x)]2

f(x)
dx.

Remark: When X ∼ 1
b
f
(
x−θ
b

)
, b known, I(θ) = 1

b2

∫∞
−∞

[f ′(x)]2

f(x)
dx. The proof is done in

a similar way.

Information for scale family: If X ∼ 1
θ
f(x/θ), then I(θ) = 1

θ2

∫ [yf ′(y)
f(y)

+ 1
]2

f(y)dy.

proof: uθ(X) = −1/θ2f(x/θ)−x/θ3f ′(x/θ)
1
θ
f(x/θ)

.

I(θ) =

∫ ∞
−∞

uθ(x)2 1

θ
f(x/θ)dx.
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Let y = x/θ ⇒ dx = θdy. Then

I(θ) =

∫ ∞
−∞

[−1/θ2f(y)− y/θ2f ′(y)]2

f(y)2
f(y)dy =

1

θ2

∫ ∞
−∞

[
1 +

yf ′(y)

f(y)

]2

f(y)dy.

Information Inequality: Suppose X ∼ fθ(x) and I(θ) > 0. Let δ(X) be any function of

X with Eθ(δ(X)2) <∞, for which the derivative w.r.t θ of Eθ(δ(X)) exists and can be dif-

ferentiated under the integral sign i.e. d
dθ
Eθ(δ(X)) =

∫
δ(x) d

dθ
fθ(x)dx =

∫
δ(x)uθ(x)fθ(x)dx.

Then

varθ(δ(X)) ≥
[
d
dθ
Eθ(δ(X))

]2
I(θ)

.

Proof: covθ(δ(X), uθ(X))2 ≤ V arθ(uθ(X))V arθ(δ(X)), by Cauchy-Schwartz inequality.

Now covθ(δ(X), uθ(X)) =
∫
δ(x)uθ(x)dx =

∫
δ(x)uθ(x)fθ(x)dx = d

dθ
Eθ(δ(X)). Also V arθ(δ(X)) ≥

[ ddθEθ(δ(X))]
2

I(θ)
.

Suppose a random sample X1, ..., Xn
iid∼ fθ(x). The score function for a random sample

is given by uθ(X) = d
dθ

log[
∏n

i=1 fθ(Xi)] =
∑n

i=1 uθ(Xi). Also Fisher information contained

in X1, ...Xn, denoted by In(θ) is given by In(θ) = V ar[uθ(X)] = V ar[
∑n

i=1 uθ(Xi)] = nI(θ).

Cramer-Rao Inequality: Let X1, ..., Xn be iid from a distribution with pdf or pmf f(x|θ).

Let T (X) be any unbiased estimator of s.t. E[T (X)] = m(θ). Assume that all the regularity

conditions hold then, V ar(T (X)) ≥ [m′(θ)]2

nI(θ)
. When equality holds, T (X) must be of the form

T (X) = m′(θ)
nI(θ)

∑n
i=1 uθ(Xi) +m(θ).

proof: Use Cauchy-Schwartz inequality on to obtain Cov(T (X), uθ(X))2 ≤ V ar[T (X)]V ar[uθ(X)].

Thus V ar[T (X)] ≥ m′(θ)
nI(θ)

with equality holding if and only if T (X) = a(θ)
∑n

i=1 uθ(Xi)+b(θ).

Now E(T (X)) = m(θ) implies b(θ) = m(θ). Also Cov(T (X),
∑n

i=1 uθ(Xi)) = m′(θ) implies
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a(θ) = m′(θ)
nI(θ)

.

Remark: It is very important that the regularity conditions hold. To show this use U(0, θ)

case and show that the lower bound is not satisfied. Let X1, ..., Xn ∼ U(0, θ). Then

d
dθ

log(fθ(x)) = −1/θ, I(θ) = 1/θ2. So, the Cramer-Rao lower bound for the variance of

any unbiased estimator of θ is θ2/n. Note that T (X) = X(n) has expectation E[X(n)) =∫ θ
0
nyn

θn
= n

n+1
θ. Thus (n+1)

n
X(n) is an unbiased estimator of θ. Now V ar( (n+1)

n
X(n)) =

(n+1)2

n2 [ n
n+2

θ2 − ( n
n+1

θ)2] = θ2

n(n+2)
which is lower than the Cramer-Rao inequality.

example: X1, ..., Xn ∼ Pois(λ). log(f(x|λ)) = x log(λ) − λ − log(x!), uλ(x) = x
λ
− 1,

E[uλ(X)2] = 1
λ
. Let m(λ) = λ. Let us see T (X) = λ

n

∑n
i=1

(
Xi−λ
λ

)
+ λ = X̄.

Bottomline is check this quantity and see if it is free of parameters. Then it has to be

UMVUE. Otherwise find out in some other way as discussed before.

Multi-parameter case: When X ∼ fθ(x) where θ = (θ1, ..., θk) we define a score vector

instead of a scalar score. The score vector is defined as uθ(x) = ( δ
δθ1
fθ(x), ...., δ

δθk
fθ(x)). and

the Fisher information matrix is given by I(θ) = ((Iij(θ)))ki,j=1, where Iij(θ) = E[ δ
δθi

log fθ(x) δ
δθj

log fθ(x)].

Information matrix for the location-scale family: Let X ∼ 1
θ2
f(x−θ1

θ2
). It follows from

the previous result that I11(θ) = 1
θ22

∫∞
−∞

[f ′(x)]2

f(x)
dx, I22(θ) = 1

θ22

∫ [yf ′(y)
f(y)

+ 1
]2

f(y)dy. Using

similar trick we can show that I12(θ) = 1
θ22

∫
y [f ′(y)]2

f(y)
dy.

Example: N(µ, σ2), Gamma(α, β).

Multi-parameter Information Inequality: Suppose that I(θ) is positive definite and

αi = δ
δθi
Eθ(δ(X)) exists and differentiation w.r.t θi can be done under integration w.r.t. x.

Then V arθ(δ(X)) ≥ α′I−1(θ)α, where α = (α1, ..., αk).

2 Method for finding estimators

There a number of ways to estimate an unknown parameter or parameters. We will mainly

discuss the following methods.

(i) Method of moments
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(ii) Method of maximum likelihood

(iii) Bayes and minimax estimators.

2.1 Method of Moments

Sometimes we don’t know how to create estimators of a parameter and we need to depend

on intuition. For example, estimating a parameter with its sample analogue can give good

estimates. For example sample mean is a good estimator for the population mean. In general

we create the method of moments estimator as follows.

mj =
1

n

n∑
i=1

Xj
i

Let µ′j = E[Xj]. Generally µ′j’s are functions of the unknown parameters θ1, ..., θk. Therefore

by solving k equations

mj = µ′j(θ1, ..., θk), j = 1, ..., k,

we have some estimates of θ1, ..., θk. Using our previous techniques it might be shown that

they are UMVUE sometimes. It might not be the case, but when you have nothing to

start with, MOM gives you a fairly good starting point. Simplest example are binomial and

normal where we have seen X̄ is UMVUE for parameters.

Example: X1, ..., Xn ∼ N(µ, σ2). MOM does the following

X̄ = µ,
1

n

n∑
i=1

X2
i = µ2 + σ2 ⇒ σ2 =

1

n

n∑
i=1

(Xi − X̄)2.

We already know they are UMVUE for µ and (n−1)
n
σ2. So here MOM estimator looks good.

However, consider the situation when X1, ..., Xn ∼ DE(µ, σ2). Even for this case MOM

estimator remains the same, though it is not all the UMVUE. This is a disadvantage that
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the MOM estimator doesn’t take care of the difference in distributions. Another impor-

tant disadvantage is you are not using distribution of the random sample, just using some

population moments. Sometimes this might produce estimators outside the range of the

parameters.

Example: X1, ..., Xn ∼ Bin(k, p). Then MOM estimators are obtained by

X̄ = kp,
1

n

n∑
i=1

X2
i = kp(1− p) + k2p2 ⇒ k =

X̄

X̄ − (1/n)
∑n

i=1(Xi − X̄)2
, p =

X̄

k
.

Although we know estimate of k has to be an integer, there is no way to impose it in the

method of moments.

Example: Another problem arises when one needs to calculate MOM estimator for a curved

exponential family N(θ, θ2). MOM estimator might not exist in this case as there might not

be any solution to the two equations X̄ = θ and 1
n

∑n
i=1 X

2
i = θ2 + θ.

2.2 Maximum Likelihood Estimators

Maximum likelihood estimator or MLE is the most popular technique for deriving estima-

tors. It takes into account the actual distribution of the data and estimates parameters

so as to maximize likelihood. Let fθ1,...,θk(x) be the pdf of X. Then the likelihood X is

L(θ1, ..., θk) =
∏n

i=1 fθ1,...,θk(Xi). MLE is the value of θ̂ = (θ1, ..., θl), denoted by (θ̂1, ..., θ̂k),

that maximizes the Likelihood L(θ1, ..., θk). MLE is found by solving ∂L(θ)
∂θi

= 0, i = 1, ..., k.

Often we solve MLE by solving the score equation
∑n

i=1 uθ(Xi) = 0. Let θ̂1, ..., θ̂k be the

solutions of these equations. Then MLE should satisfy ∂2L(θ)
∂θ

2
|θ = θ̂ < 0.

However, when MLE is in the boundary of the parameter space you have to be more careful.

Example: X1, ..., Xn ∼ N(θ, 1), θ > 0. If X̄ > 0, then it is the MLE. Now when X̄ < 0,
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then

exp(−
n∑
i=1

(Xi − θ)2/2) = exp(−
n∑
i=1

(Xi − X̄)2/2) exp(−n(X̄ − θ)2/2).

The above expression is monotonically decreasing for θ > 0, as X̄ < 0. Therefore MLE of

θ = 0. Besides this, MLE also satisfies another important property that makes it easy to

interpret in many practical contexts.

Result: MLE, if exists, is always a function of a sufficient statistic. It is very clear from

the factorization theorem fθ(X) = g(T (X), θ)h(X). However MLE need to be a function

of the minimal sufficient statistic. Here is an example X1, ..., Xn ∼ U(θ − 1
,
θ + 1). Now the

likelihood of θ is

L(θ) =
1

2n
I[X(1) > θ − 1, X(n) < θ + 1] =

1

2n
I[X(n) − 1 < θ < X(1) + 1].

Here minimal sufficient statistics is (X(1), X(n)). But MLE can be any value of θ between

X(n) − 1 and X(1) + 1. So Let θ̂ = |X̄|
|X̄|+1

(X(n) − 1) + 1
|X̄|+1

(X(1) + 1) is an MLE which is not

a function of minimal sufficient statistic.

Invariance Property of MLE: If θ̂ is the MLE of θ, then for any function τ(θ) , the MLE

of τ(θ) is τ(θ̂).

There is another interesting result stating that MLE is “asymptotically the most efficient

estimator”. What do I mean by that? It means the following result.

Asymptotic Distribution of MLE: In smooth regular problems MLE θ̂ converges in

probability to θ and
√
n(θ̂ − θ) converges in distribution to N(0, 1

I(θ)
) when X1, ..., Xn is a

random sample from fθ(x). Furthermore, by delta theorem, if g′(θ) exists and nonzero then

√
n(g(θ̂)− g(θ)) converges in distribution to N(0, g

′(θ)
I(θ)

).

Remember g′(θ)
I(θ)

is the Cramer-Rao lower bound on the variance of any unbiased esti-

mator of g(θ). It seems that asymptotically variance of g(θ̂) is achieving that variance and

asymptotically it is unbiased too. Therefore, asymptotically MLE or any function of MLE is
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the “most efficient” estimator for its asymptotic expected value. “Asymptotic relative effi-

ciency” of any other estimator is ratio of its asymptotic variance to the asymptotic variance

of MLE.

Asymptotic Normality does not hold in non-regular problems: I will show an ex-

ample of non-regularity.

example 1: X1, ...Xn
iid∼ U(0, θ), θ > 0. Here MLE of θ is X(n). In your assignment problem

you have seen that n(X(n) − θ) converges in distribution to exp(θ).

2.3 Bayes and Minimax Estimator

Bayes and Minimax estimator is related to the Bayesian approach. You will learn them in

detail in AMS 206. But, I am gonna give you a small introduction. You will learn that

classical approaches face many different problems that Bayesians overcome. But, I will skip

all those details. They are not the central focus of this course. Instead, I will show you how

to compute Bayesian estimates. First recall what a frequentist is doing.

Receive dataX1, ..., Xn → Finds θ̂ as a fn. ofX1, ..., Xn.

In Bayesian we do not see the parameter θ as fixed and unknown. Rather we think of it

as a random variable with unknown distribution and our aim is to find out that unknown

distribution. The setting is the following.

• X1, ...., Xn ∼ f(x|θ). Mainly thinking about the iid case, otherwise (X1, ..., Xn) ∼

f(x|θ).

• Assume a prior distribution π(θ) for θ. Prior distribution can be anything. It depends

on your subjective choice.

• Posterior distribution of θ|X1, ..., Xn is given by π(θ|X1, ..., Xn) = f(X1,...,Xn|θ)π(θ)∫
f(X1,...,Xn|θ)π(θ)dθ

.

When X1, ..., Xn is iid we have f(X1, ..., Xn|θ) =
∏n

i=1 f(Xi|θ).
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• Bayes estimator is the posterior mean of θ, i.e. E[θ|X1, ..., Xn] =
∫
θπ(θ|X1, ..., Xn)dθ.

example: X1, ..., Xn ∼ Ber(p), prior distribution p ∼ Beta(α, β). Then

π(p|X1, ..., Xn) ∝ p
∑n
i=1Xi(i− p)n−

∑n
i=1Xipα−1(1− p)β−1 = p

∑n
i=1Xi+α−1(i− p)n−

∑n
i=1Xi+β−1.

Hence p|X1, ..., Xn ∼ Beta(
∑n

i=1Xi + α, n−
∑n

i=1Xi + β).

example: X1, ..., Xn ∼ Poi(λ), prior distribution λ ∼ Gamma(α, β). Then

π(p|X1, ..., Xn) ∝ λ
∑n
i=1Xie−nλλα−1e−λβ = λ

∑n
i=1Xi+α−1e−λ(n+β).

Hence λ|X1, ..., Xn ∼ Gamma(
∑n

i=1Xi + α, n+ β).

Have you noticed one thing? Prior and Posterior belong to the same class of distribution.

This was deliberate. We wanted to chose the prior distribution so that calculation of the

posterior is easier and this is one way to do it. Choosing prior in a way depending on the pdf

of X so that prior and posterior distributions are the same. We call such prior distribution

as the conjugate family. A formal definition is here

Definition (Conjugate family): Let F denote the class of pdfs or pmfs f(x|θ). A class Π

of prior distributions is a conjugate family for F if the posterior distribution is in the class

Π for all f ∈ F , all priors in Π and all x ∈ X .

In a wide range of applications it is simply not possible to find a conjugate family. One needs

to employ some approximation algorithm to estimate posterior distributions in such cases.

MCMC algorithm is the most popular of such. You will learn about them in AMS 206.

Once you approximate the posterior distribution, you also have mean of that approximated

posterior.

This is the basics of Bayesian statistics. Now we will learn how to create “good” estimators

of θ using the “risk function” notion in Bayesian statistics. Let δ(X) be an estimator of θ.

The loss in estimating θ by δ(X) is represented by a function given by a function L(θ, δ).

This function L(·, ·) is known as the loss function. EX|θ[L(θ, δ(X)] = R(θ, δ) is known as
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the risk function of δ. Recall that if L(θ, δ(X)) = (θ−δ(X))2, then R(θ, δ) = MSE of δ(X).

Given two estimators δ1, δ2, we say δ1 is better than δ2 if R(θ, δ1) ≤ R(θ, δ2) for all θ, and

the inequality is strict at least for one θ. When risk of two estimators intersect with each

other we do not know which one to choose. At that time, we have to propose a summary

measure from this entire risk function to choose one of them. Different summary measures

give rise to different estimators. We will discuss two of them as following.

1. Minimize average risk = EθEX|θ[L(θ, δ(X))] which gives rise to the Bayes estimator.

2. Minimize supremum risk = supθ EX|θ[L(θ, δ(X))] which gives rise to the Minimax

estimator.

2.3.1 Bayes Estimator

Note that EθEX|θ[L(θ, δ(X))] = EXEθ|X [L(θ, δ(X))]. So, if we can find δ that minimizes

Eθ|X [L(θ, δ(X))] for allX, that is the solution of this problem. There are a few loss functions

for which the solution is easy to find.

Squared Error Loss: Let L(θ, δ(X)) = (θ−δ(X))2. Then Eθ|X [(θ−δ(X))2] is maximized

by E[θ|X], which is the posterior mean of θ, it is easy to see as Eθ|X [(θ − δ(X))2] =

Eθ|X [(θ − E[θ|X])2] + Eθ|X [(E[θ|X] − δ(X))2]. Sometimes for complicated loss function,

people do it in the following way

d

dδ
Eθ|X [L(θ, δ(X))] = 0,

and find δ. For example, in squared error loss d
dδ
Eθ|X [(θ − δ)2] = 0 implies Eθ|X [θ] = δ(X).

Example: In the previous examples, we have seen p|X1, ..., Xn ∼ Beta(
∑n

i=1 Xi + α, n −∑n
i=1Xi + β). Thus E[p|X] =

∑n
i=1Xi+α

n+α+β
= X̄ n

n+α+β
+ α

α+β
α+β

n+α+β
. This is clearly a biased

estimator of θ.

Weighted Squared Error Loss: Let L(θ, δ(X)) = w(θ)(θ − δ(X))2, where w(θ) > 0 be

some function of θ. Here to find the Bayes estimator we solve d
dθ
Eθ|X [w(θ)(θ− δ)2] = 0 that
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implies Eθ|X [w(θ)θ] = δ(X)Eθ|X [w(θ)]. Hence δ(X) = E[w(θ)θ|X]
E[w(θ)|X]

.

Note that the Bayes estimator is an “optimal” estimator in some sense. Can it be unbiased?

The answer for the squared error loss is given as following.

Theorem 2.1 No unbiased estimator δ(X) of θ can be a Bayes estimator unless EθEX|θ[(θ−

δ(X))2] = 0.

Proof Let δ(X) be an unbiased estimator which is also a Bayes estimator, so E[δ(X)|θ] = θ

for all θ and E[θ|X] = δ(X). Note that

EθEX|θ[δ(X)θ] = Eθ[θEX|θ[δ(X)]] = Eθ[θ
2] (3)

EXEθ|X [δ(X)θ] = EX [δ(X)E[θ|X]] = EX [δ(X)2]. (4)

Thus EθEX|θ[δ(X)2] = EθEX|θ[δ(X)θ] = EθEX|θ[θ
2]. Hence

Eθ,δ(X)[(θ − δ(X))2] = Eθ,δ(X)[θ
2 − 2δ(X)θ + δ(X)2] = 0.

This is an easy way to check if some estimator is a Bayes estimator for a parameter. For

example, when X1, ..., Xn ∼ N(µ, σ2), σ2 known, X̄ is the UMVUE, though it is not a Bayes

estimator as EµEX|µ[(X̄ − µ)2] = Eµ[σ2/n] = σ2/n 6= 0.

Remark: Also recall that the Bayes estimator is not unbiased (show that). In fact it is, in

many cases, a convex combination of the prior mean and data mean.

2.3.2 Minimax Estimator

Minimax estimators minimize supθ EX|θ[L(θ, δ(X))]. Thus minimax estimator is going to

protect us in the worst case scenario. Identifying a minimax estimator is a hard task.

However, sometimes we can rely on our intuitions to find a minimax estimator. The idea

is that some parameter values are responsible for higher risk than others. If the prior

distribution of θ gives high prior probability to those values, then maybe a Bayes estimator
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will be a minimax estimator. Let us formalize this intuition.

Definition (Least Favorable Distribution): A prior distribution is π(θ) on θ is known

to be a least favorable prior if EθEX|θ[L(θ, δπ(X))] ≥ EθEX|θ[L(θ, δπ′(X))] for all prior

distribution π′ on θ. Here δπ and δπ′ are Bayes estimators w.r.t priors π and π′ respectively.

So, π is such a prior distribution that is just increasing the risk for the Bayes estimator.

Result: If π(θ) be a prior distribution for which
∫
EX|θ[L(θ, δπ)]dθ = supθ EX|θ[L(θ, δπ)],

where δπ is the Bayes estimator, then

(a) δπ is minimax.

(b) π is least favorable.

Proof (a) For any estimator δ(X),

sup
θ
EX|θ[L(θ, δ)] ≥ EθEX|θ[L(θ, δ)] ≥ EθEX|θ[L(θ, δπ)] = sup

θ
EX|θ[L(θ, δπ)], ∀ θ.

Hence δπ is minimax.

(b) Note that

EθEX|θ[L(θ, δπ)] = sup
θ
EX|θ[L(θ, δπ)] ≥

∫
EX|θ[L(θ, δπ)]π′(θ)dθ ≥ EX|θ[L(θ, δπ′)]π

′(θ)dθ

= EθEX|θ[L(θ, δπ′)],

for any other prior distribution π′. Therefore, ]pi is least favorable.

This result gives us a way to find minimax estimator in some cases. This is the algorithm.

step 1: First find out Bayes estimator and calculate its risk function. For squared error loss

that simply boils down to calculating its MSE.

Step 2: Find the prior distribution that will make this risk constant (free of the model

parameter θ).

Step 3: Evaluate Bayes estimator at these prior parameters. This Bayes estimator will be
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minimax.

Example: X1, ..., Xn ∼ Ber(p). Under squared error loss find the minimax estimator. With

p ∼ Beta(α, β), the Bayes estimator is given by δπ(X) =
∑n
i=1Xi+α

α+β+n
. With a bit of calculation

one can show that

EX|p((δ(X)− p)2) =
1

(α + β + n)2
[α2 + {n− 2α(α + β)}p+ {(α + β)2 − n}p2].

This is constant as a function of p if 2α(α+β) = n and α+β =
√
n. Solving these equations,

we obtain α = β =

sqrtn/2. Hence the minimax estimator is
∑n
i=1Xi+

√
n
2

n+
√
n

.

3 Testing of hypothesis

Statistical hypothesis testing is all about

• Beginning with a tentative idea about the unknown parameter.

• Want to test the validity of this tentative idea based on sample information. Existing

tentative idea, status quo: H0 (null hypothesis), new idea: H1 (alternative hypothesis).

• We begin by assuming that the null hypothesis is true. Only when there is an over-

whelming evidence contradicting null do we reject it in favor of alternative.

H0 is true H0 is false
Do not reject H0 Correct Type 2 error

Reject H0 Type 1 error Correct

Type 1 error = P (reject H0|H0 is true), Type 2 error = P (do not reject H0|H0 is false).

Type 1 error is also known as the level of the test. While power of the test is defined by

power= 1− Type 2 error = P (reject H0|H0 is false).

Generality: Ideally we would like to minimize both type 1 and type 2 error. But it turns
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out that it is not possible to simultaneously minimize both of them. So, we fix level at a

pre-specified value and find a test that maximizes power.

Parametric tests: X1, ..., Xn ∼ f(x|θ), we test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1. If Θ0 is singleton

we will call it a simple null hypothesis, o.w. we will call it a composite null hypothesis.

Let R = {x ∈ X |The null hypothesis is rejected for x} be the rejection region or critical

region.

φ(x) = prob. of rejecting H0 when x is observed. The power function of a test is given by

β(θ) =
∫
φ(x)f(x|θ), clearly for any level α test β(θ) ≤ α, ∀θ ∈ Θ0. Let us first motivate

with an example.

Find the best level 1/8th test. If you take R = {0}, then level = 1/8, power = 1/2. It is

X 0 1 2 3
f0 1/8 1/8 1/4 1/2
f1 1/2 1/4 1/8 1/8

the best. It seems like you need to include those points in the rejection rejection for which

f1/f0 is higher. It is the most powerful test based on sample size 1.

Neyman-Pearson Lemma: Consider testing H0 : θ = θ0 vs. H1 : θ = θ1, where the pdf or

pmf corresponding to θi is f(x|θi), i = 0, 1, using a test with rejection region R that satisfies

φ(x) =

 1 if f(x|θ1) > kf(x|θ0)

0 if f(x|θ1) < kf(x|θ0)

for some k ≥ 0, and α = Pθ0(X ∈ R). Then

(a) Any test that satisfies the above is the most powerful level α test.

(b) If there exists a test satisfying the above, then every MP level α test is a size α test

and every MP level α test satisfies the above except perhaps on a set A satisfying

Pθ0(x ∈ A) = Pθ1(X ∈ A) = 0.
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Let φ′(x) be the test function of any level α test. Consider the function [φ(x)−φ′(x)][f(x|θ1)−

kf(x|θ0)] ≥ 0.

0 ≤
∫

[φ(x)− φ′(x)][f(x|θ1)− kf(x|θ0)] = β(θ1)− β′(θ1)− k(β(θ0)− β′(θ0))

β(θ0) ≥ β′(θ0), thus β(θ1) > β′(θ1). To prove statement (b), note that if φ′(x) is a MP level

α test. Now from the previous equation, β(θ1) = β′(θ1), thus β′(θ0) ≥ β(θ0) = α. It is level

α means size α. Nonnegative integrand [φ(x) − φ′(x)][f(x|θ1) − kf(x|θ0)] has to be zero

except for a set satisfying...

Remember Factorization theorem, which states f(x|θ) = g(T, θ)h(x), where T is the suffi-

cient statistic. Using this result we find the Neyman-Pearson most powerful test of level α

as

φ(t) =

 1 if g(t, θ1) > kg(t, θ0)

0 if g(t, θ1) < kg(t, θ0)

for some k ≥ 0, where α = Pθ0(φ(T ) = 1).

example: Let X1, X2 ∼ Ber(θ). Want to test H0 : θ = 1
2

vs. H1 : θ = 3
4
. We know the

sufficient statistics here is T =
∑2

i=1Xi ∼ Binomial(2, θ). The three likelihood ratios are

given below

f(0|θ = 3
4
)

f(0|θ = 3
4
)

=
1

4
,
f(1|θ = 3

4
)

f(1|θ = 3
4
)

=
3

4
,
f(2|θ = 3

4
)

f(2|θ = 3
4
)

=
9

4
.

If we choose 3
4
< k < 9

4
, Neyman-Pearson lemma gives us that the test is MP-level α = P (T =

2|θ = 1
2
) = 1

4
. If we choose 1

4
< k < 3

4
, we have the MP level α = P (T = 1, 2|θ = 1

2
) = 3

4

test. Choosing k < 1
4

or k > 9
4

yields MP level α = 1 or α = 0 respectively.

example: X1, ..., Xn ∼ N(µ, σ2), σ2 known. Find MP level α test for H0 : µ = µ0 vs

µ = µ1. We know X̄ ∼ N(µ, σ2/n), sample mean is sufficient for µ. Now g(X̄,µ1)

g(X̄,µ0)
> k implies

X̄ <
(2σ2 log(k))/n−µ20+µ21

2(µ1−µ0)
. Finding a level α test boils down to finding k. k is determined by
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the equation P (X̄ <
(2σ2 log(k))/n−µ20+µ21

2(µ1−µ0)
) = α. Solve for k.

Neyman-Pearson lemma provides us the most powerful test of level α for testing a point

null vs point alternative. Now we will see more general sets Θ0 and Θ1 and how to carry out

testing there. For point null vs. point alternative, our goal was to find out MP level α test.

Now we will try to find out test which is uniformly most powerful (UMP) for a composite

hypothesis. Here is the definition.

Definition: Let C be a class of tests for testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0. A test in class

C, with power function β(θ) is a uniformly most powerful (UMP) class C test if β(θ) ≥ β1(θ)

for every θ ∈ Θc
0 and every β1(θ) that is a power function of a test in class C.

In our context we want UMP level α test for composite hypothesis. It is not always easy

to derive such a test for general Θ0. But for some specific Θ0, we can construct such tests.

But to do so, we need the family of distributions {f(·|θ) : θ ∈ Θ} to satisfy the following

property.

Monotone Likelihood Ratio: The family f(·|θ) is said to have monotone likelihood ratio

in T (x) if f(x|θ1)
f(x|θ0)

is an increasing function of T (x) whenever θ1 > θ0.

Example: X1, ..., Xn ∼ N(θ, 1). Let θ1 > θ0. Then

f(x|θ1)

f(x|θ0)
= exp

(
n∑
i=1

Xi(θ1 − θ0)− n

2
(θ2

1 − θ2
0)

)
,

showing that N(θ, 1) family has MLR in
∑n

i=1 Xi.

Suppose a parametric family f(·|θ) has MLR in T (x). Let θ1 > θ0, we already know that

the MP level α test for testing H0 : θ = θ0 vs. H1 : θ = θ1 is

φ(x) =

 1 if T (x) > b

0 if T (x) < b

s.t. Pθ0(T (x) > b) = α. This test does not depend on the value of θ1. So, this is the
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uniformly most powerful test of level α for testing H0 : θ = θ0 vs. H1 : θ > θ0.

Remark: It can be shown that the power function β(θ) = Eθ(φ), is non-decreasing. To

prove this, let θ1 > θ2. Clearly, the power function β(θ) = Pθ(T > t). Note that

d

dt
[Pθ1(T ≤ t)− Pθ2(T ≤ t)] = fθ1(t)− fθ2(t) = fθ2(t)

(
fθ1(t)

fθ2(t)
− 1

)
.

R.H.S is increasing as a function of t means, it can only change sign from negative to positive.

Therefore, any internal extremum is a minimum. Therefore, the function in the bracket in

L.H.S is maximized at ∞ or −∞. At both these points, value of the function is 0. Thus

Pθ1(T ≤ t)− Pθ2(T ≤ t) < 0. Hence the power function β(θ) is nondecreasing.

This means that if θ ≤ θ0, β(θ) ≤ β(θ0) ≤ α. Therefore, the above test is also a UMP

level α test for testing H0 : θ ≤ θ0 vs. H1 : θ > theta0.

Remark: One parameter exponential family has MLR in
∑n

i=1 t(Xi). Therefore, there exists

a UMP test of level α for H0 : θ ≤ θ0 vs. H1 : θ > θ0.

Refer to the earlier normal example.

Remark: It is easy to see that the UMP level α test for testing H0 : θ ≥ θ0 vs. H1 : θ < θ0

is given by

φ(x) =

 1 if T (x) < b

0 if T (x) > b

s.t. Pθ0(T (x) < b) = α.

proof: Proof is very similar to the previous one. Start with H0 : θ = θ0 vs. H1 : θ = θ1,

θ1 < θ0. Since fθ(·) has MLR in T (X), means
fθ0 (·)
fθ1 (·) is a nondecreasing function of T (X).

Hence
fθ1 (·)
fθ0 (·) is a nondecreasing function of −T (X). Thus, the NP test can be written as

φ(x) =

 1 if T (x) < b

0 if T (x) > b

s.t. Pθ0(T (x) < b) = α. Since this test function is free of θ1, this is a UMP test for test-
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ing H0 : θ = θ0 vs. H1 : θ < θ0. By our previous proof the test function for this test is

β(θ) = Pθ(T (X) < b) which is a nonincreasing function of θ. Hence β(θ0) ≥ β(θ) for all

θ ≥ θ0. Hence it is a UMP test for H0 : θ ≥ θ0 vs. H1 : θ < θ0.

p-value: We have seen that in the NP lemma k = k(α) is determined by using the fact

that probability of fθ1(X)/fθ0(X) > k is α. Note that, in many such cases the rejection

region Rα is nested in a way that Rα ⊂ Rα′ for α < α′. When this is the case, it is a good

practice to see not only whether the hypothesis is accepted or rejected, but also determine

the smallest level at which the hypothesis is rejected. It is known as the p-value. More

formally, it is p(X) = inf{α : X ∈ Rα}.

Example: Consider testing H0 : µ = 0 vs. H1 : µ > 0, where X1, ..., Xn
iid∼ N(µ, 1). Thus

the rejection region for the UMP test is Rα = {X̄ : X̄ > 1√
n
z1−α} = {X̄ : 1−Φ(

√
nX̄) < α}.

Thus the infimum over all α where the last inequality holds for a given X̄ is p(X) =

1− Φ(
√
nX̄).

Remark: For the one parameter exponential family, there does not exist a UMP test of

level α that tests H0 : θ = θ0 vs. H1 : θ 6= θ0.

Proof in the general case requires quite a bit of notations. I will show it for normal distribu-

tion to develop the intuition. Suppose X1, ..., Xn ∼ N(θ, σ2), σ2 known. For any θ1 < θ0 the

UMP-level α test for testing θ0 vs. θ1 is given by a test that rejects if X̄ < −σzα/
√
n + θ0.

It has the highest possible power for any θ1 < θ0. Any other level α test will have the same

rejection region by Neyman-Pearson except for a set with probability measure zero. Now

consider the test that rejects H0 if X̄ > σzα/
√
n+ θ0. For any θ2 > θ0,

Pθ2(X̄ > σzα/
√
n+ θ0) = Pθ2(

X̄ − θ2

σ/
√
n
> zα +

θ0 − θ2

σ/
√
n

) > P (Z > zα) = P (Z < −zα)

> Pθ2(
X̄ − θ2

σ/
√
n
< −zα +

θ0 − θ2

σ/
√
n

) = Pθ2(X̄ < −σzα/
√
n+ θ0).

Therefore the latter test has more power than the former at θ2. Hence the former test is not

UMP.
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Remark: However outside exponential family such a proposition is not true. For example

consider testing H0 : θ = θ0 vs. H1 : θ 6= θ0 for X1, ..., Xn ∼ U(0, θ). I will assign this as a

homework problem.

Note that the problem here is for H1 : θ > θ0 we have a UMP test φ1 and for H1 : θ < θ0

we have a UMP test φ2. They have power curves like the one in the picture. However we

want a power curve something like this. We will restrict the class of tests among which we

are going to find out the most powerful test. Give a pictorial depiction of what we want.

Unbiasedness

A test φ is unbiased level α for H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 if (i) β(θ) ≤ α for θ ∈ Θ0 (ii)

β(θ) ≥ α for θ ∈ Θ1.

If the power function β(θ) is continuous and if the test T is unbiased, then β(θ) = α for

all θ belonging to the boundary of Θ0 and Θ1.

Result: If the densities are s.t. all tests have continuous power functions, then if there exists

a UMP test T among the tests satisfying E(T ′) = α whenever θ belongs to the boundary of

Θ0 and Θ1, then T is UMPU level α test.

Application to one parameter exponential family: We already know that the one pa-

rameter exponential family is given by pθ(x) = c(θ)h(x) exp(w(θ)T (x)). Let us reparametrize

this family and take w(θ) = η. W.r.t the new parametrization, entire density can be writ-

ten as pη(x) = c1(η)h(x) exp(ηT (x)). With such a parametrization, the following is true.

UMPU test: To test H0 : η = η0 vs. H1 : η 6= η0, the test function φ(T (X)) with

φ(T (X)) =

 1 if T (X) < c1 or T (X) > c2

0 o.w.

where Eη0(φ(T (X))) = α, Eη0(T (X)φ(T (X))) = αEη0 [T (X)], is the UMPU level α test.

With little calculation you will be able to see that if T (X) is symmetrically distributed

about a under H0, then Eη0 [φ(T (X))] = α, c1 + c2 = 2a determine c1, c2.
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Example (UMPU test): Suppose X1, ..., Xn ∼ N(θ, σ2). To test H0 : θ = θ0 vs.

H1 : θ 6= θ0. We use the previous result. Note that, η = θ and T (X) = X̄. Now the

distribution of
√
n(X̄ − θ0)/σ is symmetric around 0. Thus c1 + c2 = 0 and Pθ0(

√
n(X̄ −

θ0)/σ > c2) + Pθ0(
√
n(X̄ − θ0)/σ < c1) = α. Thus we have to solve the two equations

c1 + c2 = 0

1− Φ(c2) + Φ(c1) = α.

c1 = −c2 = −zα/2.

Consider the test that rejects if |X̄ − θ0| > σzα/2/
√
n. This is clearly an unbiased test

as Pθ0(|X̄ − θ0| > σzα/2/
√
n) = P (Z > zα/2) + P (Z < −zα/2) = α and Pθ′(|X̄ − θ0| >

σzα/2/
√
n) = Pθ′(X̄ − θ0 > σzα/2/

√
n) + Pθ′(X̄ − θ0 < −σzα/2/

√
n) = Pθ′(X̄ − θ′ >

σzα/2/
√
n+θ0−θ′)+Pθ′(X̄−θ′ < −σzα/2/

√
n+θ0−θ′) = 1−Φ(zα/2+ θ0−θ′

σ/
√
n
)+Φ(−zα/2+ θ0−θ′

σ/
√
n
).

Likelihood Ratio Test: The aim is to test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, Θ1 = Θ −Θ0

based on samples X1, ..., Xn. Let fθ(X) be the likelihood at θ. The likelihood ratio test

statistic is given by

λ =

sup
θ∈Θ0

fθ(X)

sup
θ∈Θ

fθ(X)
.

The decision is to reject when λ < c, where c is chosen to satisfy the level condition, i.e.

sup
θ∈Θ0

Pθ(λ < c) ≤ α. Since 0 ≤ λ ≤ 1, so is c.

Example: Let X1, ..., Xn be random sample from a location shifted exponential density

fθ(x) =

 e−(x−θ) if x ≥ θ

0 o.w.
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Consider testing H0 : θ ≤ θ0 vs. H1 : θ > θ0. The likelihood function is

L(θ) =

 e−
∑
Xi+nθ) if X(1) ≥ θ

0 o.w.

Now this is an increasing function of θ in the region θ ≤ X(1). Clearly, the denominator in

the likelihood ratio is maximum at X(1). If X(1) ≤ θ0, the numerator is also maximum at

X(1). Otherwise it is maximum at θ0. Therefore the likelihood ratio test statistic (LRT) is

λ =

 1 if X(1) ≤ θ0

e−n(X(1)−θ0) o.w.

The test is rejected if λ < c or X(1) ≥ θ0 − log(c)
n

. Here LRT test is dependent on the data

only through a sufficient statistic and this is not automatic. In fact

Result: If T (X) is a sufficient statistic for θ and λ∗(T (X)) and λ(X) are the LRT test

statistics based on T (X) and X, respectively, then λ∗(T (X)) = λ(X) for every X.

The proof of this result follows directly from the factorization theorem. Note that fθ(X) =

gθ(T (X))h(X). Now

λ(X) =

sup
θ∈Θ0

fθ(X)

sup
θ∈Θ

fθ(X)
=

sup
θ∈Θ0

gθ((T (X))

sup
θ∈Θ

gθ(T (X))
= λ∗(T (X)).

Union-Intersection and Intersection-Union test

The union-intersection method of test construction might be useful when the null hypothesis

is conveniently expressed as an intersection,

H0 : θ ∈
⋂
γ∈Γ

Θγ,
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where Γ is an indexing set. Lets say the tests are available for each of the problems of

testing H0γ : θ ∈ Θγ vs. H1γ : θ ∈ Θc
γ. Further assume that the rejection region for each

test is Rγ = {X : Tγ(X) ∈ Sγ}. Then the rejection region for the union-intersection test is⋃
γ∈ΓRγ.

The rational is that if any one of the H0γ is rejected, then H0 is rejected.

The intersection-union test is constructed when the null hypothesis is expressed as H0 :

θ ∈
⋃
γ∈Γ Θγ. Suppose for each test the rejection region is Rγ = {X : Tγ(X) ∈ Sγ}. Then

the rejection region for the intersection-union test is
⋂
γ∈ΓRγ.

Note that intersection-union or union-intersection tests are constructed in such a way

that it is difficult to evaluate size of these tests. However, we can find certain bounds on

their size in various examples. These bounds are important to ensure that they are of level α.

Theorem: Consider a UIT test for testing H0 : Θ0 vs. H1 : θ ∈ Θc
0, where Θ0 =

⋂
γ∈Γ Θγ.

Let λγ(X) be the LRT statistics for testing H0γ vs. H1γ. Let λ(X) be the LRT statistic for

testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0. Define T (X) = infγ∈Γ λγ(X) so that the UIT rejection

region
⋃
Rγ = {X : T (X) < c}, Rγ = {X : λγ(X) < c}. Then

1. T (X) > λ(X) for every X.

2. If βT (θ) and βλ(θ) are power functions based on the tests T and λ respectively, then

βT (θ) ≤ βλ(θ), for every θ.

proof: Note that, λ(X) ≥ λγ(X), for any γ, as numerator is maximized over a bigger set.

Thus λ(X) ≥ T (X).

Also βT (θ) = Pθ(T (X) < c) ≤ Pθ(λ(X) < c) = βλ(θ).

Therefore, LRT is uniformly most powerful than UIT. The usefulness of UIT lies in the

fact that when LRT rejects H0, by looking at various tests in UIT you might get additional

information. Note that this result is true only for UITs constructed through likelihood ratio

tests. If LRT λ(X) is difficult to compute for the entire region, you don’t know how to keep
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your UIT test at level α. For intersection-union or IUT test such problems do not arise.

Here is the result that says so.

Theorem: Let αγ be the size of the test of H0γ with rejection region Rγ. Then the IUT

test with rejection region
⋂
γ∈Γ
Rγ rejects null hypothesis H0 at level α = sup

γ∈Γ
αγ.

proof: Let θ ∈ Θ0, then θ ∈ Θγ for some γ and Pθ(X ∈
⋂
γ∈Γ
Rγ) ≤ Pθ(X ∈ Rγ, γ ∈ Γ) =

αγ ≤ α.

Therefore, for IUT test one can start with any tests and ensure level α.

Example: Let X1, ..., Xn be a random sample from a N(µ, σ2) population. Consider testing

H0 : µ = µ0 vs. H1 : µ 6= µ0. H0 : {µ : µ ≤ µ0}∩{µ : µ ≥ µ0}. The LRT for H01 : µ ≤ µ0 vs.

H11 : µ > µ0 is reject if
√
n(X̄−µ0)

S
≥ t1. Similarly, the LRT of H02 : µ ≥ µ0 vs. H12 : µ < µ0 if

√
n(X̄−µ0)

S
≤ t2. Then the union intersection test is to reject

√
n(X̄−µ0)

S
≥ t1 or

√
n(X̄−µ0)

S
≤ t2.

If t2 = −t1 ≥ 0, the union intersection is the same as the LRT test. This is also the two

sided t-test.

Bayesian Test

In Bayesian testing, entire testing can be formulated based on the posterior distribution.

Suppose we want to test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0. In Bayesian testing, we compute

P (θ ∈ Θ0|X) and P (θ ∈ Θc
0|X) and choose the hypothesis having higher posterior proba-

bility, i.e. choose H0 if P (θ ∈ Θ0|X) ≥ 0.5.

Example: Let X1, ..., Xn ∼ N(θ, σ2) and the prior distribution for θ is N(µ, τ 2), σ2, tau2, µ

are known. Consider testingH0 : θ ≤ θ0 vs. H1 : θ > θ0. Note that θ|X̄ ∼ N(nτ
2X̄+σ2µ
nτ2+σ2 , σ2τ2

nτ2+σ2 ).

We do not reject H0 is and only if P (θ ≤ θ0|X) ≥ 0.5. Since the posterior distribution is

symmetric, this is true if and only if nτ2X̄+σ2µ
nτ2+σ2 ≤ θ0. This implies X̄ ≤ θ0 + σ2(θ0 − µ)/nτ 2.
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4 Interval Estimation

Until now, we have seen

• How to provide point estimate for an unknown parameter.

• What is the optimal way to do it.

• How to test various hypotheses on the parameter.

In this section, we are going to talk about interval estimates. What do we mean by interval

estimates? Here is the definition.

Definition (Interval Estimator): An interval estimate of a real valued parameter θ is any

pair of functions L(X1, ..., Xn) and U(X1, ..., Xn) of a sample that satisfy L(X) ≤ U(X) for

all X. The random interval [L(X), U(X)] is called an interval estimator. Note that the

interval can also be open/half open and L(X), U(X) can be −∞,∞ respectively.

Example: For a sample X1, ..., Xn ∼ N(µ, σ2), σ2 known. Now an interval estimate of µ is

(X̄− zα/2σ/
√
n, X̄ + zα/2σ/

√
n), which means that we will assert that µ lives in the interval.

Obviously a point estimate is more precise than an interval estimator. Then what do we

gain by moving to an imprecise estimator from a precise estimator? We gain confidence.

What do I mean by that?

We known that for our normal example point estimate of µ is X̄. We have seen this esti-

mator is UMVUE. But Pµ(X̄ = µ) = 0. However, Pµ(µ ∈ (X̄−zα/2σ/
√
n, X̄+zα/2σ/

√
n)) =

1− α. Thus with the imprecise interval estimator we can say with 100(1− α)% confidence

that µ lies in the interval. (1 − α) in this case is known as the coverage probability of the

interval. A formal definition of the coverage probability is given below.

Definition: For an interval estimator [L(X), U(X)] of a parameter θ, the coverage proba-

bility of [L(X), U(X)] is the probability that the random interval covers the parameter θ.

In symbol, It is denoted by Pθ(θ ∈ [L(X), U(X)]).

This means if we go on constructing intervals with different samples many times, roughly

Pθ(θ ∈ [L(X), U(X)]) proportion of time θ will lie in the interval.
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Definition: For an interval estimator [L(X), U(X)] of a parameter θ, the confidence coeffi-

cient of [L(X), U(X)] is the infimum of the coverage probabilities, infθPθ(θ ∈ [L(X), U(X)]).

Interval estimators together with the confidence coefficient is sometimes known as the con-

fidence interval.

4.1 Methods of Finding Interval Estimators

In this section we will describe two different methods of finding interval estimators, though

both of them are not very different from each other.

4.1.1 Inverting a test statistics

Think about the old example of X1, ..., Xn ∼ N(µ, σ2), σ2 known and let H0 : µ = µ0 vs.

H1 : µ 6= µ0. We known an UMPU level α test is that which accepts H0 if |X̄ − µ0| ≤

σzα/2/
√
n, or

Pµ0(X̄ − σzα/2/
√
n ≤ µ0 ≤ X̄ + σzα/2/

√
n) = 1− α.

However this statement is true for all µ. Hence a 100(1 − α)% confidence interval of µ is

given by [X̄ − σzα/2/
√
n, X̄ + σzα/2/

√
n].

Result: For each θ0 ∈ Θ. Let A(θ0) be the acceptance region of a level α test of H0 : θ = θ0.

For each X ∈ X , define a set C(X) in the parameter space by C(X) = {θ0 : X ∈ A(θ0)}.

Then the random set C(X) is the (1− α) confidence set.

We have seen an illustration of the above result in the normal case. We will see another

way to do it.

Inverting an LRT: Let X1, ..., Xn ∼ Exponential(λ). We have to find (1− α) confidence

interval for λ. Let us try to invert an LRT test of H0 : λ = λ0 vs. H1 : λ 6= λ0. The LRT
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statistics in this case is given by

L =

1
λn0
e−

∑
Xi/λ0

supλ
1
λn
e−

∑
Xi/λ

=

(
e
∑
Xi

nλ0

)n
e−

∑
Xi/λ0 .

For fixed λ0, the acceptance region is given by

A(λ0) = {X :

(∑
Xi

λ0

)n
e−

∑
Xi/λ0 ≥ k∗}.

Inverting the LRT we obtain the (1−α) confidence set as C(X) = {λ :
(∑

Xi
λ

)n
e−

∑
Xi/λ ≥

k∗}. Now C(X) depends only through
∑
Xi. So the confidence interval can be expressed

in the form C(
∑
Xi) = {λ : L(

∑
Xi) ≤ λ ≤ U(

∑
Xi)}. Now note that

∑
Xi/λ ∼

Gamma(2, 1). Hence P (a <
∑
Xi/λ < b) = 1 − α. So the (1 − α) confidence interval is

(
∑
Xi/b,

∑
Xi/a).

Normal one sided confidence bound: Remember testing H0 : µ = µ0 vs. H1 : µ > µ0.

The UMP α test rejects alternative when X̄−µ0
σ/
√
n
> zα. So a (1− α) confidence interval for µ

is [x̄− Zασ/
√
n,∞).

4.1.2 Pivotal Quantities

In the last example we saw that
∑
Xi/λ is a quantity whose distribution is indenpendent

of the parameter. We used that to create a confidence interval. Actually this is a specific

example to a very general case. We call such quantities as pivotal quantities whose distribu-

tion do not depend on the parameters.

Definition (pivotal quantity): A random variable Q(X, θ) = Q(X1, ..., Xn; θ) is a pivotal

quantity (or pivot) if the distribution of Q(X, θ) is independent of all parameters.

There are some class of distributions where constructing pivotal quantities are fairly easy.

They are the following.

(i) Location Family: When Xi ∼ f(x−µ), X̄−µ is an easily conceivable pivotal quantity.
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(ii) Scale Family: When Xi
1
σ
∼ f(x

σ
), X̄

σ
is an easily conceivable pivotal quantity.

(iii) Location-scale Family: When Xi
1
σ
∼ f(x−µ

σ
), X̄−µ

S
is an easily conceivable pivotal

quantity. Here S is the standard deviation of X1, ..., Xn.

Of course for a specific family of distributions, there can be multiple pivotal quantities.

Examples: N(µ, σ2) is a location scale family, Exponential(λ) is a scale family, Gamma(α, β),

α known, is a scale family.

As you might have already guessed that once we have a pivotal quantity Q(X, θ), it is

really easy to come up with a confidence interval for θ. If Q(X, θ) is the pivotal quantity,

there can be found a, b s.t.

Pθ(a < Q(X, θ) < b) ≥ 1− α.

Then for each θ0, A(θ0) = {X : a < Q(X, θ) < b} is the acceptance region for a level α

test. Therefore by a previous result we have C(X) = {θ : a < Q(X, θ) < b} is the (1 − α)

confidence set for θ. If θ is a real valued parameter and if for each X, Q(X, θ) is a monotone

function of θ, then C(X) will be an interval.

Example: X1, ..., Xn ∼ N(µ, σ2), µ is known. We know T = (n − 1)S2/σ2 ∼ χ2
n−1. T is

a pivotal quantity so that P (χ2
n−1,α/2 < T < χ2

n−1,1−α/2) = 1 − α, which gives us a (1 − α)

confidence interval.

Poisson interval estimator: Let X1, ..., Xn be a random sample with Poisson distribution

having parameter λ. Need to find a 100(1 − α)% confidence interval for λ. Now Y =∑n
i=1Xi ∼ Pois(nλ). Note that a set of λ that contains (1− α) probability is {λ : Fλ(y) ≤

1− α/2, Fλ(y) ≥ α/2}, y is the observed value of
∑
Xi. If Fλ(·) is monotone as a function

of λ, this set is an interval. To find upper bound and lower bound for this interval, we solve
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the following equations

y∑
k=0

e−nλ
(nλ)k

k!
= α/2,

∞∑
k=y

e−nλ
(nλ)k

k!
= α/2.

Luckily,
∑y

k=0 e
−nλ (nλ)k

k!
= P (χ2

2(y+1) > 2nλ), thus the solution to the above equation is

λ = 1/2nχ2
2(y+1),α/2. Similarly the lower bound can be found out.

4.1.3 Bayesian Intervals

Problems with frequentist intervals: Frequentist interval is essentially a a random

interval and coverage of the frequentist interval is a statement based on repeated experiments.

This might lead to some anomalies.

example 1: X1, ..., Xn
iid∼ U(θ − 1

2
, θ + 1

2
). Clearly this is a location family and hence

X̄ − θ is a pivotal quantity. Therefore, the 95% confidence interval is [X̄ −C, X̄ +C] where

P (−C < X̄ − θ < C) = 0.95. This is a 95% confidence interval for always. Now assume we

observed X1 = 1, X2 = 2, then we know with 100% confidence that θ = 1.5. But you can’t

determine it from frequentist viewpoint.

In the classical statistics when we obtain a (1− α) confidence interval say a ≤ θ ≤ b, we

are tempted to say that the probability is (1 − α) for the parameter to stay in the interval

[a,b]. However in classical statistics the interval is a random quantity while the parameter

is fixed. Therefore such a conclusion does not hold. What holds is that if we construct the

interval for many times with different random samples, about (1− α) fraction of the time it

will contain the true parameter. However θ is a fixed quantity and it should either be or not

be in the interval. This is in some sense leads to conceptual ambiguity.

In contrast in the Bayesian set up θ is a random variable and the observed data are fixed.

So conceptually θ ∈ [a, b] should occur with a prob. not with 0 or 1. In the Bayesian set both

hypothesis testing and interval estimation are incredibly unambiguous and easy. Suppose
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X1, ..., Xn ∼ fθ(x), θ ∼ π, then the posterior distribution of θ|X1, ..., Xn is given by

π(θ|X1, ..., Xn) ∝
∏

fθ(Xi)π(θ).

Once we have the posterior, to carry out a hypothesis testing of H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

we only need to see if
∫
Θ0
π(θ|X1, ..., Xn)dθ > 0.5. If so then null is not rejected, o.w. null

is rejected. Note that the cut-off might change, but the principle is the same and it saves

us from different case consideration and finding out some UMP test. Similarly we define the

idea of credible set in Bayesian statistics.

Definition: For 0 < α < 1 a 100(1− α)% credible set C is a set s.t. P (θ ∈ C|X) = 1− α.

When a credible set is an interval we call it a credible interval. We always want to work

with a credible interval rather than a general credible set.

Note that unlike frequentist confidence interval, in Bayesian statistics θ is a random vari-

able. Therefore, the probability that θ belongs to some set is between 0 and 1. Ideally you

can have thousands of 100(1−α)% credible intervals. Which one to choose among them. In

interval estimation, you will always look for choosing an interval which has same coverage

but smaller length. For that one needs highest posterior density (HPD) intervals.

Result: Suppose the posterior density of θ is unimodal. Then the HPD interval for θ is the

interval C = {θ : π(θ|X) ≥ k}, where k is chosen such that π(C|X) = 1− α. This interval

is obviously the smallest interval among all 100(1− α)% credible intervals.

Example: Recall an earlier example where X1, ..., Xn ∼ Ber(p), p ∼ Beta(a, b) then

p|X1, ..., Xn ∼ Beta(
∑n

i=1Xi + a, n −
∑n

i=1 Xi + b). Let a, b be chosen cut-offs from the

Beta distribution so that the interval contains prob. (1 − α), then that interval becomes a

(1− α) credible interval for p.

Another significant advantage of Bayesian credible interval is that it is very easy to accurately

estimate even with most complicated examples. This is what you are going to do.

• You will run MCMC to draw sufficient number of posterior samples.
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• Find an interval so that the empirical probability of this interval is (1− α).

5 Method of Evaluating Intervals

In general while constructing an interval estimate we want the intervals to have smallest

possible size with largest possible coverage. However the requirements are conflicting. Hence,

we fix the coverage and try to minimize length of the confidence interval.

Remember the example where we had X1, ..., Xn ∼ N(µ, σ2), σ known. A (1 − α)

confidence interval can be of the form {µ : X̄ − bσ/
√
n ≤ µ ≤ X̄ − aσ/

√
n} where P (a ≤

Z ≤ b) = 1−α, Z ∼ N(0, 1). We have always chosen b = −a = zα/2. Was there any reason?

The answer is yes. In fact

Result: Let f(x) be a unimodal pdf. If the interval [a, b] satisfies

(1)
∫ b
a
f(x)dx = 1− α (2) f(a) = f(b) > 0 (3) a ≤ x∗ ≤ b, where x∗ is the mode a mode of

f(x). Then [a, b] is the shortest interval among all that satisfy (1).

Proof Let [a′, b′] be any interval with b′ − a′ < b − a. We will show that this implies∫ b′
a′
f(x)dx < 1 − α. The result will only be proved for a′ ≤ a, the proof being similar for

a′ > a. Also for a′ ≤ a, we need to consider two cases, b′ ≤ a and b′ > a.

case 1: If b′ ≤ a, then a′ ≤ b′ ≤ a ≤ x∗. Thus

∫ b′

a′
f(x)dx ≤ f(b′)(b′ − a′) ≤ f(a)(b′ − a′) < f(a)(b− a) ≤

∫ b

a

f(x)dx

Thus, case 1 is done.

case 2: If b′ > a′, then a′ ≤ a < b′ < b, o.w. [a′, b′] will be contained in [a, b]. Now

∫ b′

a′
f(x)dx =

∫ b

a

f(x)dx+

[∫ a

a′
f(x)dx−

∫ b

b′
f(x)dx

]
.
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∫ a

a′
f(x)dx ≤ f(a)(a− a′),

∫ b

b′
f(x)dx ≥ f(b)(b− b′).

Thus

∫ a

a′
f(x)dx−

∫ b

b′
f(x)dx ≤ f(a)(a− a′)− f(b)(b− b′)

= f(a)[(a− a′)− (b− b′)] = f(a)[(b′ − a′)− (b− a)].

The last expression is negative as we have assumed that b′ − a′ < b− a.

We have previously seen examples of normal and t-tests as examples of this theorem. You

can mainly use this result for pivoting with location families, otherwise you have to be careful

to use this result. Now I am going to show another way to find the above result. This is a

more general way and will be useful in other cases, as we will see.

Our objective is to minimize b − a subject to
∫ b
a
f(x)dx = 1 − α. This is a constrained

optimization and also note that the optimized value of b is a function of a, denote it by b(a).

Clearly we have to minimize two equations

db

da
− 1 = 0,

db

da
f(b)− f(a) = 0.

They together give f(b) = f(a).

Example: Suppose X ∼ Gamma(k, β). The quantity Y = X/β is a pivot, with Y ∼

Gamma(k, 1). Therefore confidence interval of β can be found choosing cut-offs so that

P (a ≤ Y ≤ b) = 1−α. We can’t use the previous theorem blindly here. Because the interval

of β is of the form {β : X
b
≤ β ≤ X

a
}. Therefore, the length of the interval is X(1/a− 1/b),

not b − a. Now the task is to maximize 1/a − 1/b subject to
∫ b
a
f(x)dx = 1 − α. Taking

derivative w.r.t. a, we have two equations − 1
a2

+ db
da

1
b2

= 0, db
da
f(b) − f(a) = 0. This gives

b2f(b) = a2f(a).

There is one interesting question still unanswered. Is there any connection between
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optimality of hypothesis testing and optimality of finding confidence set. Now we are going

to define another intriguing concept that connects them. Note that the probability of true

coverage for an interval C(X) is given by Pθ(θ ∈ C(X)), i.e probability of covering the true

parameter. The probability of false coverage is the function of θ, θ′ s.t.

Pθ(θ
′ ∈ C(X)), θ 6= θ′, if C(X) = [L(X), U(X)]

Pθ(θ
′ ∈ C(X)), θ < θ′, if C(X) = (−∞, U(X)]

Pθ(θ
′ ∈ C(X)), θ > θ′, if C(X) = [L(X),∞),

it is the probability of covering θ′ when the true parameter is θ. Note that false coverage will

be big if we unnecessarily cover unimportant θ′ and it would potentially increase the length

of the interval without increasing coverage. Therefore our aim should be in reducing false

coverage. Here is a theorem that connects an acceptance region of a UMP test of H0 : θ = θ0

vs. H1 : θ > θ0 to the purpose of reducing false coverage.

Result: Let X1, ..., Xn ∼ fθ(x), where θ is a real-valued parameter. For each θ0 ∈ Θ, let

A∗(θ0) be the UMP level α acceptance region of a test of H0 : θ = θ0 vs. H1 : θ > θ0. Let

C∗(X) be the (1−α) confidence set formed by inverting the UMP acceptance regions. Then

for any (1− α) confidence set C,

Pθ(θ
′ ∈ C∗(X)) ≤ Pθ(θ

′ ∈ C(X)), for all θ′ < θ.

Proof Let θ′ < θ be any value. Let A(θ′) be the acceptance region of the level α test of

H0 : θ = θ′ obtained by inverting C. Since A∗(θ′) is the UMP acceptance region for testing

H0 : θ = θ′ vs. H1 : θ > θ′. Since θ > θ′, we have

Pθ(θ
′ ∈ C∗(X)) = Pθ(X ∈ A∗(θ′)) ≤ Pθ(X ∈ A(θ′)) = Pθ(θ

′ ∈ C(X)).

We have previously seen that for the normal problem C(X̄) = {µ : µ ≥ X̄ − zασ/
√
n} is the

acceptance region for the UMP test H0 : µ = µ0 vs. H1 : µ > µ0. Therefore this interval
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reduces false coverage probability.

Definition: A (1 − α) confidence set C(X) is unbiased if Pθ(θ
′ ∈ C(X)) ≤ 1 − α for all

θ 6= θ′.

An unbiased confidence set ensures that false coverage is never more than the minimum

probability of true coverage. An unbiased confidence set is obtained by inverting an biased

test. I will conclude this section by stating a result that connects our intuition of length of

C(X) and probability of false coverage. This is a theorem by Pratt, but Ghosh independently

proved it at about the same time.

Result: Let X ∼ fθ(x), θ is a real valued parameter. Let C(X) = [L(X), U(X)] be the

confidence interval for θ. If L(x) and U(x) are both increasing functions of x, then for any

θ′

Eθ′(Length[C(X)]) =

∫
θ 6=θ′

Pθ′(θ ∈ C(X))dθ.

Proof From the definition

Eθ∗(Length[C(X)]) =

∫
χ

Length[C(X)]fθ∗(x)dx

=

∫
χ

[U(x)− L(x)]fθ∗(x)dx

=

∫
χ

[

∫ U(x)

L(x)

dθ]fθ∗(x)dx

=

∫
Θ

[

∫ L−1(θ)

U−1(θ)

fθ∗(x)]dθ

=

∫
Θ

Pθ∗(U
−1(θ) ≤ X ≤ L−1(θ))dθ

=

∫
Pθ∗(θ ∈ C(X))dθ =

∫
θ 6=θ∗

Pθ∗(θ ∈ C(X))dθ
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