
Properties of Random Samples

For the next two weeks, I will discuss some of the concepts of random sample which we use

very frequently. These are certainly not the central focus of this course, but it is extremely

important for all of us to know these concepts. We have to use these ideas throughout this

quarter. First we need to know what do we mean by a random sample.

Definition: The random variables X1, ..., Xn together is known as the random sample of

size n from the population f(x|θ) if X1, ..., Xn are mutually independent, or the joint density

of X1, ..., Xn is given by
∏n

i=1 f(xi|θ). We will commonly write as X1, ..., Xn
iid∼ f .

Example: X1, ..., Xn is a random sample from exponential(β). What is P (X1 ≤ a1, ..., Xn ≤

an).

Note that

P (X1 ≤ a1, ..., Xn ≤ an) =
n∏
i=1

P (Xi ≤ ai) =
n∏
i=1

P (Xi ≤ ai) =
n∏
i=1

∫
1

β
e−x/βdx =

n∏
i=1

(1− e−ai/β).

Remark: X1, ..., Xn are independent means g1(X1), ..., gn(Xn) are independent for any func-

tions g1, ..., gn. This means if X1, ..., Xn is a random sample of size n, g(X1), ..., g(Xn) is also

a random sample of size n for any function g.

Moral of the story is that in a random sample, the probability of any event related to

Xi has nothing to do with Xj for i 6= j. There are some important advantages of dealing

with random samples. By that I mean, some of the random variables derived from a random

sample have closed form distributions. Let us see an example. For example, consider the

random variable
∑n

i=1Xi.

Example: X1, X2, ..., Xn is a random sample from Pois(λ). What is P (X1 + · · ·+Xn = a)?
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Note that

P (X1 +X2 = m) =
m∑
l=0

P (X1 = l, X2 = m− l) =
m∑
l=0

P (X1 = l)P (X2 = m− l)

=
m∑
l=0

e−λλl

l!

e−λλm−l

(m− l)!
=
e−2λ(2λ)m

m!

1

2m

m∑
l=0

m!

l!(m− l)!
=
e−2λ(2λ)m

m!

Therefore, X1 +X2 ∼ Pois(2λ). Using induction we can show X1 + · · ·+Xn ∼ Pois(nλ).

Some Important definitions: E[Xk] =
∫
xkf(x|θ)dx, V ar(X) = E[X2]−E[X]2, Cov(Xi, Xj) =

E[XiXj] − E[Xi]E[Xj]. For any random sample E[XiXj] =
∫ ∫

xixjf(xi, xj|θ)dxidxj =∫
xif(xi|θ)

(∫
xjf(xj|θ)xj

)
dxi = E[Xi]E[Xj]. Therefore, Cov(Xi, Xj) = 0. The reverse is

not always true except for normal.

Moment generating function: What is the easiest way to find E[Xk] for any k. There

is a function known as moment generating function which is given by MX(t) = E[etX ] =∫
etxf(x|θ)dx. If MGF exists at a neighborhood of 0, then E[Xk] = dk

dtk
MX(t)|t=0. For a

random sample, MX̄(t) = [MX̄(t/n)]n.

Example: Let X ∼ N(µ, σ2). Let us compute MGF of X. For every t ∈ R,

E[etX ] =

∫
exp(tx)

1√
2πσ2

exp(−(x− µ)2

2σ2
)dx

=

∫
1√

2πσ2
exp

(
−1

2

[
x2

σ2
− 2x(

µ

σ2
+ t) +

µ2

σ2

])
dx

=

∫
1√

2πσ2
exp

(
− 1

2σ2

[
x− µ− tσ2

]2)
dx exp

(
(µ− tσ2)2

2σ2
− µ2

2σ2

)
= exp

(
(µ+ tσ2)2

2σ2
− µ2

2σ2

)
= exp

(
tµ+

1

2
t2σ2

)
.

Note that MGF is exists in a range of t. For normal distribution, the range is entire R.

However, MGF might not be valid for the entire R for many other distribution.

Exercise: Let X ∼ Gamma(α, β). Find the MGF of X.

Change of variable theorem: X1, ..., Xn random sample from a distribution f(x|θ). We

would like to find the joint distribution of (ψ1(X1, ..., Xn), ..., ψn(X1, ..., Xn)). Let u1 =
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ψ1(x1, .., xn),...,un = ψn(x1, ..., xn). Further x1 = H1(u1, ..., un),...,xn = Hn(u1, ..., un). Then

fU(u1, ..., un) =

[
n∏
i=1

f(Hi(u1, ..., un)|θ)

]
det

((
∂Hi(u1, ..., un)

∂uj

)n
i,j=1

)
.

example (Box-Muller transformation): Let U1, U2 ∼ U(0, 1). Show thatX1 =
√
−2 log(U1)cos(2πU2)

follows N(0,1). I will derive this in class. This will give you an idea about how to use the

change of variable theorem.

Exercise: To be specified in the class.

Some important results on random sample

Result 1: X1, ..., Xn be a random sample and E[g(X1)] and V ar(g(X1)) exist, thenE[
∑n

i=1 g(Xi)] =

nE[g(X1)], V ar(
∑n

i=1 g(Xi)) = nV ar(g(X1)).

Result 2: If X and Y are independent random variables with pdf fX(x) and fY (y) respec-

tively, then the pdf of Z = X + Y is fZ(z) =
∫
fX(w)fY (z − w)dw. Note that

P (Z ≤ z) = P (X + Y ≤ z) =

∫ ∞
−∞

P (w + Y ≤ z)fX(w)dw =

∫ ∞
−∞

P (Y ≤ z − w)fX(w)dw

=

∫ ∞
−∞

∫ z−w

−∞
fY (y)fX(w)dydw =

∫ ∞
−∞

∫ z

−∞
fY (y − w)fX(w)dydw =

∫ z

−∞

∫ ∞
−∞

fY (y − w)fX(w)dwdy.

Taking derivative w.r.t z on both sides fZ(z) =
∫
fX(w)fY (z − w)dw.

Result 4: If Z ∼ N(0, 1), then Z2 ∼ χ2
1. If Xi ∼ χ2

1 independently, then
∑
Xi ∼ χ2

n.

(Note that the definition of χ2
n is Gamma(n

2
, 1

2
)).

P (Z2 ≤ z) = P (−
√
z ≤ Z ≤

√
z) = 2P (0 < Z ≤

√
z) = 2

∫ √z
0

1√
2π

exp(−x
2

2
)dx.
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let w = x2, so that dx = dw
2
√
w

. This implies the above integral is

P (Z2 ≤ z) = 2

∫ z

0

1

2
√

2wπ
exp(−w

2
)dw =

∫ z

0

1√
2wπ

exp(−w
2

)dw.

Recall the density of Gamma(α, β) is f(x|α, β) = βαxα−1e−βx

Γ(α)
, 0 < x <∞.

Take derivative on both sides w.r.t. z that implies density of Z is χ2
1.

Result 3: Let X1, ..., Xn ∼ N(µ, σ2) and let, X̄ = 1
n

∑n
i=1Xi, S

2 = 1
n−1

∑n
i=1(Xi − X̄)2.

Then

(a) X̄ and S2 are independent.

(b) X̄ ∼ N(µ, σ2/n).

(c) (n− 1)S2/σ2 ∼ χ2
n−1.

Some of the important distributions which you will frequently en-

counter

Students t distribution: When X1, ..., Xn ∼ N(µ, σ2), if we know σ2 then the quantity

X̄−µ
σ/
√
n

can be used as a basis for inference on µ. We know the closed form distribution of

that quantity. However when σ is unknown, one instead use the quantity X̄−µ
S/
√
n
. It is very

intuitive, S2 is an unbiased estimator of σ2. Now,

X̄ − µ
S/
√
n

=
(X̄ − µ)/

√
σ2n√

(n− 1)S2/
√
n− 1

=
N(0, 1)√

χ2
n−1/
√
n− 1

.

We create a special class of distributions for handling such objects. In fact if U ∼ N(0, 1), V ∼

χ2
p and U, V independent, then U/

√
V/p follows a students t distribution with p degrees of

freedom, denoted by tp. By result 3, X̄−µ
S/
√
n

follows a tn−1. By the change of variable theorem,
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we can show that the density of tp is

f(t) =
Γ((p+ 1)/2)

Γ(p/2)

1
√
pπ

(1 + t2/p)−(p+1)/2, −∞ < t <∞.

For p = 1 no moments exist for t, but for p > 1 E[tp] = 0 and V ar(tp) = p
p−2

for p > 2.

F distribution

If U ∼ χ2
p, V ∼ χ2

q and U, V are independent, then U/p
V/q

is said to follow an Fp,q distribution.

We will see the significance of distribution much later. But let us see some of the interesting

facts about Fp,q distribution.

(a) X ∼ Fp,q implies 1/X ∼ Fq,p. (b) X ∼ tq, then X2 ∼ F1,q. (c) If X ∼ Fp,q, then

(p/q)X/(1 + (p/q)X) ∼ Beta(p/2, q/2).

Order Statistics: Suppose X1, ..., Xn be a random sample. The order statistics from

the random sample is given by

X(1) = min
1≤i≤n

Xi, ...., X(n) = max
1≤i≤n

Xi.

X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics from the random sample. The joint

distribution of the order statistics is given by

f(X(1), ..., X(n)|θ) = n!fX1(x1) · · · fXn(xn).

Marginal density of the j-th order statistic

fX(j)
(x) =

n!

((j − 1)!(n− j)!
fX(x)[FX(x)]j−1[1− FX(x)]n−j.
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example: X1, ..., Xn ∼ exp(λ). Then fX(x) = 1
λ

exp(−x/λ) and FX(x) = 1 − exp(−x/λ).

Thus fX(1),...,X(n)
(x1, ..., xn) = 1

λn
exp(−λ

∑n
i=1 xi), x1 < x2 < · · · < xn and fX(j)

(x) =

n!
((j−1)!(n−j)!

1
λ

exp(−x/λ)[1− exp(−x/λ)]j−1[exp(−x/λ)]n−j.

Joint density of (X(i), X(j)) is given by

fX(i),X(j)
(x1, x2) =

n!

((i− 1)!(j − i− 1)!(n− j)!
fX(x1)fX(x2)[FX(x1)]i−1[FX(x2)− FX(x1)]j−i−1

[1− FX(x2)]n−j, x1 ≤ x2.

example: X1, ..., X2
iid∼ exp(λ). Then

fX(i),X(j)
(x1, x2) =

n!

((i− 1)!(j − i− 1)!(n− j)!
[

1

λ2
exp(−(x1 + x2)/λ)][1− exp(−x1/λ)]i−1

[exp(−x1/λ)− exp(−x2/λ)]j−i−1[exp(−x2/λ)]n−j, x1 ≤ x2.

Some applications of order statistics.

• A electric device runs on 20 batteries and dies when 15th battery dies. If X1, ..., X20 are

the random variables corresponding to lifetimes of 20 batteries, the lifetime of electric

device is X(15).

• A policy of five family members are in an insurance policy which says that they will

receive a a huge money when two people die. Here if X1, ..., X5 are life spans of 5

people, we are interested in X(2).

0.1 Some convergence concepts

We always receive a sample of size n. What if the sample size becomes infinite? We will talk

about two concepts of convergence.

Convergence in Probability: A sequence X1, ... converges is probability to a random
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variable X if , for every ε > 0 limn→∞ P (|Xn −X| ≥ ε) = 0. For example take a sequence

Xn ∼ N(0, 1/n). Then P (|Xn| > ε) ≤ E(X2
n)

ε2
= 1

nε2
→ 0.

There are two important properties for the convergence in probability.

Properties of convergence in probability: (a) Xn converges to X in probability implies

g(Xn) converges to g(X) in probability, for any continuous fn. g.

(b) Xn converges to X and Yn converges to Y in prob. means Xn + Yn converges to X + Y

in prob.

Convergence in distribution: A sequence of random variables X1, ... is said to converge

in distribution to X, if limn→∞ FXn(x) = FX(x), at all points where FX(x) is continuous.

Convergence in probability implies convergence in distribution, reverse is not generally true

except when convergence is happening on constants.

example: Let X1, ..., Xn be random sample from U(0, 1), where does n(1−X(n)) converge

in distribution as n→∞?

Note that P (n(1−X(n)) < t) = P (X(n) > 1− t
n
) = 1−P (X(n) < 1− t

n
) = 1−(1− t

n
)n → 1−e−t.

Hence n(1−X(n)) converges in distribution to exp(1).

An important fact: Xn converges in probability implies Xn converges in distribution. The

reverse is not true in general. For example, take P (X = 0) = P (X = 1) = 1
2

and Xn = X

for all n. Then X and 1−X have the same distribution. Thus Xn converges in distribution

to 1−X. However, P (|Xn − (1−X)| > 1/2) = 1 for all n. Therefore Xn doesn’t converge

in probability to 1−X.

Referring to the question in the class. Why the definition of convergence in distribution

is limited to the continuity point of FX . Let Xn = 1
n

and X = 0. There is noting random in

Xn and X and as a deterministic sequence Xn converges to X. Now we expect that when a

deterministic sequence converges to a number, the sequence of random variables degenerate
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at this deterministic sequence should converge in distribution. Now

FXn(x) =

 0, if x < 1
n

1 x ≥ 1
n

Thus

lim
n→∞

FXn(x) =

 0, if x ≤ 0

1 x > 0

However,

FX(x) =

 0, if x < 0

1 x ≥ 0

In general Xn, Yn converge in distribution to X, Y respectively in distribution does not

mean Xn + Yn converges to X + Y . We need some additional condition provided by the

following theorem.

An important result bridging two types of convergence (Slutsky Thoerem): If

Xn → X in distribution and YN → a in probability, then (a)YnXn → aX in distribution, (b)

Yn +Xn → Y + a in distribution.

Most Important applications of the two types of convergence

Weak law of large number: Let X1, ..., Xn be iid random variables with EXi = µ,

V ar(Xi) = σ2 < ∞. Define X̄n = (1/n)
∑n

i=1Xi. Then, for every ε > 0, limn→∞ P (|X̄n −

µ| < ε) = 1.

Central limit theorem: Let X1, ..., Xn be a sequence of iid random variables whose mgf

exists in a nbd. of 0. Let EXi = µ, V ar(Xi)σ
2 > 0. Define X̄n = (1/n)

∑n
i=1Xi. Let

Gn(x) denote the cdf of
√
n(X̄n − µ)/σ. Then, for any x, −∞ < x < ∞, limn→∞Gn(x) =∫ x

−∞
1√
2π
e−y

2/2dy.

Central limit theorem is the single most important result in statistics. It talks about large

sample behaviour of the mean of a random sample and also justifies popular usage of normal

distribution in statistical world. What happens to functions of random variables. Delta
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method below is going to give that answer.

Delta Theorem: Let Yn be a sequence of random variables that satisfies
√
n(Yn − θ)

converges in distribution to N(0, σ2). For a given function g and a specific value of θ,

suppose that g′(θ) exists and is not 0. Then

√
n[g(Yn)− g(θ)]→ N(0, σ2[g′(θ)]2) in distribution.

If g′(θ) = 0 and g′′(θ) exists and nonzero, then

n[g(Yn)− g(θ)]→ σ2 g
′′(θ)

2
χ2

1 in distribution.

example: CLT gives us
√
n(X̄n − θ) → N(0, σ2). What is the limiting distribution of

√
n( 1

X̄n
− 1

θ
).

Exercise: 5.3, 5.4, 5.8, 5.13, 5.22, 5.23, 5.24, 5.44, 5.52 & 5.53 to check CLT.

Statistical Inferential Tools

Our subject is all about using a random sample to produce estimates of unknown parameters

in the model. From random sample we create a number of summary measures to understand

the behavior of the unknown distribution. For example, we calculate mean or variance to

understand central tendency or dispersion of the unknown distribution. While calculating

these statistics, we are essentially reducing our data. Question is how should we reduce data

optimally? In the next few classes we are going to see some principles.

Sufficiency

Definition 1: Let X = (X1, ..., Xn) and X ∼ F (x | θ). T (X) is known to be the sufficient

statistic for θ if the conditional distribution of X|T (X) is independent of θ. Intuitively,

T (X) contains the “same information” about θ that X contains. There is no “additional
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information” which is required to make proper inference on θ.

Example: Let X1, X2, X3
iid∼ Bernoulli(p). Density of the Bernoulli distribution is given by

f(X) = pX(1− p)1−X , X = 0, 1.

Claim: T (X1, X2, X3) =
∑3

i=1Xi is the sufficient statistics for p.

Proof P (X1 = x1, X2 = x2, X3 = x3|T (X1, X2, X3) = t) = 0, if
∑3

i=1 xi 6= t. If
∑3

i=1 xi = t,

P (X1 = x1, X2 = x2, X3 = x3|T (X1, X2, X3) = t)

=
P (X1 = x1, X2 = x2, X3 = x3, T (X1, X2, X3) = t)

P (T (X1, X2, X3) = t)

=
P (X1 = x1, X2 = x2, X3 = x3)

P (T (X1, X2, X3) = t)

=
P (X1 = x1)P (X2 = x2)P (X3 = x3)

P (T (X1, X2, X3) = t)
[AsX1, X2, X3 are iid]

=
p
∑3
i=1 xi(1− p)3−

∑3
i=1 xi(

3
t

)
pt(1− p)3−t

[X1, X2, X3 ∼ Bernouilli(p)⇒ T (X1, X2, X3) ∼ Bin(3, p)]

=
pt(1− p)3−t(
3
t

)
pt(1− p)3−t

=
1(
3
t

) .
Above is a rigorous proof the fact that T (X1, X2, X3) =

∑3
i=1Xi is sufficient statistics for p.

Let us examine that example with more details and try to make more intuition out of it. Let

us see the probability of occurring different values A1 = {000},A2 = {001, 010, 100},A3 =

{110, 011, 101},A4 = {111} are sets whose elements have the the same probability of oc-

currence. Note that, for every element of At, T (X1, X2, X3) = t. In other words, given

any random sample X = (X1, X2, X3) (more generally for X = (X1, ..., Xn)), it is enough

to know
∑
Xi = T (X) to write down the likelihood of p. Therefore, only information on

T (X) is sufficient to infer on p as opposed to the entire sample, hence the name “sufficient

statistics”.
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cases probability
000 (1− p)3

001 (1− p)2p
010 (1− p)p(1− p) = (1− p)2p
100 p(1− p)2

110 p2(1− p)
101 p(1− p)p = p2(1− p)
011 (1− p)p2

111 p3

Table 1: Probabilities of random samples

This is a more formal way to look into it for a general distribution. Note that Pθ(X =

x) = P (X = x|T (X) = T (x))Pθ(T (X) = T (x)). Therefore, only the distribution of T (X) is

contributing in the likelihood of θ. Hence T (X) is sufficient.

Question: How to find out sufficient statistics in a general set up ?

Theorem (Factorization Theorem): Let X have joint p.d.f (or p.m.f) fθ(X), where θ

is the unknown parameter. A statistic T (X) is sufficient statistic for θ if and only if fθ(X)

can be expressed as fθ(X) = g(T (X), θ)h(X), where h(X) is a function of X which is

independent of θ.

proof: We will see the proof in the discrete case only just to simplify things. Let us prove

the “only if” part first.

P [X = x] =
∑
t

P [X = x|T (X) = t]P [T (X) = t]

Now for only one t P [X = x|T (X) = t] is positive. Hence P [X = x] = P [X = x|T (X) =

t]P [T (X) = t] = h(x)g(T (x), θ). This proves the only if part. Now we will prove the “if

part”.

P [T (X) = t] =
∑
xAt

fθ(x) =
∑
xAt

g(T (x), θ)h(x) = g(t, θ)
∑
xAt

h(x).
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Thus

P [X = x|T (X) = t] =


g(t,θ)h(x)

g(t,θ)
∑

xAt
h(x)

, if x ∈ At

0 o.w.

Example 1: Recall the last example, X1, ..., Xn ∼ Bernoulli(p). Then

fp(X) =
n∏
i=1

pXi(1− p)1−Xi = p
∑n
i=1Xi(1− p)n−

∑n
i=1Xi =

(
p

1− p

)∑n
i=1Xi

(1− p)n.

Therefore h(X) = 1 and sufficient statistic is T (X) =
∑n

i=1 Xi.

Example 2: Suppose X1, ..., Xn ∼ Poisson(λ). Then

fλ(X) =
n∏
i=1

[
exp(−λ)λXi

Xi

]
=

exp(−nλ)λ
∑n
i=1Xi∏n

i=1 Xi

.

Therefore h(X) = 1∏n
i=1Xi

and T (X) =
∑n

i=1Xi with g(T (X), λ) = exp(−nλ)λ
∑n
i=1Xi .

Example 3: Suppose X1, ..., Xn ∼ N(µ, σ2), µ is an unknown parameter, σ2 known. Then

fµ(X) =
1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

(Xi − µ)2

)
=

[
1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

X2
i

)]

× exp

(
−nµ

2 − 2µ
∑n

i=1Xi

2σ2

)
.

Hence h(X) =
[

1

(
√

2πσ2)n
exp

(
− 1

2σ2

∑n
i=1X

2
i

)]
and T (X) =

∑n
i=1Xi.

Example 4: Suppose X1, ..., Xn ∼ N(µ, σ2), µ, σ2 both unknown parameters. Then

fµ,σ2(X) =
1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

(Xi − µ)2

)
=

[
1

(
√

2πσ2)n
exp

(
−
∑n

i=1 X
2
i

2σ2
+

2µ
∑n

i=1Xi

2σ2
− nµ2

2σ2

)]
.

Therefore, h(X) = 1 and T (X) = (
∑n

i=1 X
2
i ,
∑n

i=1Xi).
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Example 5: Suppose X1, ..., Xn ∼ U(0, θ). Then

fθ(X) =
1

θn
I(0 < X1 < θ, ..., 0 < Xn < θ) =

1

θn
I(X(n) < θ)I(X(1) > 0),

where X(n), X(1) are biggest and smallest order statistics from X1, ..., Xn. Therefore, T (X) =

X(n).

Example 6: Suppose X1, ..., Xn ∼ U(θ1, θ2). Then

fθ(X) =
1

(θ2 − θ1)n
I(θ1 < X1 < θ2, ..., θ1 < Xn < θ2) =

1

(θ2 − θ1)n
I(X(n) < θ2)I(X(1) > θ1),

where X(n), X(1) are biggest and smallest order statistics from X1, ..., Xn. Therefore, T (X) =

(X(1), X(n)).

Some Important Facts:

(a) T (X) = (X1, ..., Xn), i.e. the full sample is always sufficient for the unknown parameter.

(b) If X1, ..., Xn
iid∼ fθ(x) then, f(X) =

n∏
i=1

fθ(Xi) =
n∏
i=1

fθ(X(i)). This means order statistics

X(1) ≤ · · · ≤ X(n) is always sufficient for θ. Of course this is not a big reduction, but with

so little information you can’t reduce sample much without losing any “information”.

(c) Any one to one function of a sufficient statistics is also sufficient.

• In examples 1,2,3, X̄ =
∑n
i=1Xi
n

is also sufficient, being a one-one function of∑n
i=1 Xi.

• In example 4, (X̄, S2) = K(
∑n

i=1Xi,
∑n

i=1X
2
i ), where K(z1, z2) = (z1/n, z2/n −

z2
1/n

2) which is a one to one function. Therefore (X̄, S2) is a sufficient statistics.

13



In general, you can create a lot of sufficient statistics for a problem. Let us go back to the

Bernoulli example we started with. X1, X2, X3 ∼ Bernoulli(p). We have seen
∑3

i=1 Xi is a

sufficient statistic. We also know from (a) that the full sample is sufficient statistic. Note

that

fp(X) = p
∑3
i=1Xi(1− p)3−

∑3
i=1Xi = p

∑2
i=1Xi+X3(1− p)3−

∑2
i=1Xi−X3 .

Therefore (
∑2

i=1Xi, X3) is a sufficient statistic. Also you will be able to find many other

sufficient statistics. Any sufficient statistic is providing summary of the dataset that one can

deal with without losing any information from the entire data. Therefore we are more inter-

ested in knowing the coarsest summary of the data without losing any information. Below

is a concept that explains as to how far we can proceed in summarizing the data without

losing any information contained in it.

Definition (Minimal Sufficiency): A statistic T (X) is minimal sufficient if (a) it is

sufficient, and (b) it is function of every other sufficient statistic.

Consider the good old example of Bernoulli. T1(X) = (X1, X2, X3), T2(X) = (
∑2

i=1Xi, X3),

T3(X) =
∑3

i=1Xi are all sufficient statistics foo p, as we have seen earlier. However T2 is

a function of T1 and T3 is a function of both T1 and T2. Further T1 is one-dimensional and

you can’t make anything lower dimensional than that. So, T1 has to be a minimal sufficient

statistic for p.

Question: How to find minimal sufficient statistics in more general set ups.

Theorem (Minimal Sufficiency): Let fθ(X) be the p.d.f (or, p.m.f) of X. Suppose

there exists a statistic T s.t. for any two realizations x, y of the sample T (x) = T (y) if and

only if fθ(x) = kfθ(y) where k is independent of θ, then T is a minimal sufficient statistic of θ.

14



Example 7: Lets look at our favorite example, X1, X2, X3 ∼ Bernoulli(p). We have

argued T3 is minimal sufficient from a different angle. Now lets look at it in the light of this

theorem.

fp(x)

fp(y)
=
p
∑3
i=1 xi(1− p)3−

∑3
i=1 xi

p
∑3
i=1 yi(1− p)3−

∑3
i=1 yi

=

(
p

1− p

)∑3
i=1 xi−

∑3
i=1 yi

.

This ratio is constant if and only if
∑3

i=1 xi =
∑3

i=1 yi. Hence T3(X) =
∑3

i=1 Xi is the

minimal sufficient statistic. Why T2(X) = (
∑2

i=1 Xi, X3) is not the minimal sufficient. As(
p

1−p

)∑3
i=1 xi−

∑3
i=1 yi

can be a constant even if
∑2

i=1 xi 6=
∑2

i=1 yi.

Example 8: Suppose X1, ..., Xn ∼ N(µ, σ2), µ, σ2 both unknown parameters. Then

fµ,σ2(x)

fµ,σ2(y)
=

exp
(
− 1

2σ2 [
∑n

i=1 x
2
i − 2µ

∑n
i=1 xi + nµ2]

)
exp

(
− 1

2σ2 [
∑n

i=1 y
2
i − 2µ

∑n
i=1 yi + nµ2]

)
= exp

(
− 1

2σ2

[
(
n∑
i=1

x2
i −

n∑
i=1

y2
i )− 2µ(

n∑
i=1

xi −
n∑
i=1

yi)

])
.

This ratio is constant if and only if
∑n

i=1 x
2
i =

∑n
i=1 y

2
i and

∑n
i=1 xi =

∑n
i=1 yi. Therefore

T (X) = (
∑n

i=1X
2
i ,
∑n

i=1Xi) is the minimal sufficient statistics.

Example 9: Suppose X1, ..., Xn ∼ U(θ, θ + 1), −∞ < θ < ∞. We have seen the joint

pdf is

fθ(x)

fθ(y)
=
I(θ < x1 < θ + 1, ..., θ < xn < θ + 1)

I(θ < y1 < θ + 1, ..., θ < yn < θ + 1)
=
I(x(1) > θ, x(n) − 1 < θ)

I(y(1) > θ, y(n) − 1 < θ)
.

The ratio is constant if and only if (x(1), x(n)) = (y(1), y(n)). Hence the minimal sufficient

statistics is (X(1), X(n)).

Remark: Any one to one function of a minimal sufficient statistics is also minimal sufficient.
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Minimal sufficient statistic is not unique.

Ancillary Statistics

In the previous subsection we see sufficient statistics which are summarization of the sam-

ple without losing any “information”. Sufficient statistics are something which contain all

information about θ. We are now going to introduce a different sort of statistics.

Definition (Ancillary Statistic): A statistics whose distribution does not depend on the

unknown parameter θ is known as an ancillary statistic.

It seems to us that ancillary statistics has nothing to do with θ. Then why are we interested

in it? We will see later that ancillary statistics sometimes can give information for inference

about θ.

Location family ancillary statistics: Let X1, ..., Xn ∼ F (x − θ), −∞ < θ < ∞. This

implies Zi = Xi−θ ∼ F (x). Consider the distribution of R = X(n)−X(1), the range statistic.

Now

Pθ(R ≤ r) = Pθ(X(n) −X(1) ≤ r) = Pθ(max
i

(Zi + θ)−min
i

(Zi + θ) ≤ r) = Pθ(Z(n) − Z(1) + θ − θ ≤ r).

Last probability doesn’t depend on θ. So R is an ancillary statistics for the location family.

Example 10: X1, ..., Xn ∼ U(θ, θ+1). This implies Xi−θ ∼ U(0, 1). Thus R = X(n)−X(1)

is an ancillary statistics.

Example 11: X1, ..., Xn ∼ N(µ, σ2), σ2 known. This implies Xi − µ ∼ N(0, σ2). Thus

R = X(n) −X(1) is an ancillary statistics.

Scale family ancillary statistics: Let X1, ..., Xn ∼ F (x/σ), σ > 0. Any statistic that

depends on the sample only through the n − 1 values X1/Xn,...,Xn−1/Xn is an ancillary
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statistic.

Note that Zi = Xi/σ ∼ F (x). Therefore the joint CDF of X1/Xn, ..., Xn−1/Xn is the

same as the joint CDF of Z1/Zn, ..., Zn−1/Zn. Hence any function of X1/Xn,...,Xn−1/Xn has

distribution free of θ.

Example 12: X1, ..., Xn ∼ N(0, σ2), then Xi/σ ∼ N(0, 1). Hence it is a scale family with

ancillary statistics as above.

As was said earlier, ancillary statistics together with some other statistic provide important

information about θ. For example, we have seen in example 9 that the minimal sufficient

statistic is (X(1), X(n)). By the property that any one to one function of a minimal sufficient

statistic is also minimal sufficient means (X(1) − X(n),
X(1)+X(n)

2
) is also minimal sufficient.

However we have seen in this example X(1)−X(2) is an ancillary statistic. Therefore, ancillary

statistic although gives no information on θ alone can give information on θ together with

some other statistic. Below we are going to give more insight on this phenomenon.

Example 13: Let X1, X2 be iid drawn from a distribution which has p.m.f

P (X = θ) = P (X = θ + 1) = P (X = θ + 2) =
1

3
,

where θ is an integer and unknown. Here also the minimal sufficient statistics is (X(1), X(2))

and again by a one-one transformation (X(1) −X(n),
X(1)+X(n)

2
) is minimal sufficient. Let me

denote the minimal sufficient statistic by (r,m) and let m be an integer. Given only m, θ

can be any of the three values θ = m,m− 1,m− 2. However, if we additionally know r = 2

then it can be concluded that X(1) = θ,X(2) = θ+ 2. Thus m = θ+ 1⇒ θ = m− 1. Thus r

also provides crucial information for the inference on θ.

This example also proves the fact that ancillary statistics, although contains no informa-

tion about θ in itself, is not independent of the minimal sufficient statistics. We need some

additional conditions to hold for a minimal sufficient statistic to be independent of ancillary
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statistics. A description of situations in which this occurs relies on the following definition.

Definition (Complete Statistic): Let fθ(t) be a family of pdfs (or pmfs) for a statis-

tic T (X). The family of distributions is called complete if Eθ(g(T )) = 0 for all θ implies

Pθ(g(T ) = 0) = 1 for all θ. Equivalently, T (X) is called a complete statistic.

Note that completeness is a stronger definition than minimal sufficiency. Indeed

Theorem: If a minimal sufficient statistic exists, then any complete sufficient statistic is

also a minimal sufficient statistic.

Proof Let T be a complete sufficient statistic and S is minimal sufficient. S is a function of

T as S is minimal sufficient. Now E[T |S] = g(S)⇒ E[(T −g(S))|S] = 0⇒ E[T −g(S)] = 0.

Given that S is a function of T , by completeness we have T = g(S). Therefore T is minimal

sufficient.

Notice that completeness is a property for a family of distributions, not of a particular

distribution. Let us discuss a few examples of complete statistics. Later we will provide

complete sufficient statistics for a broad class of distribution.

example: Suppose T ∼ Bin(n, p) and let g be a function s.t. Ep[g(T )] = 0. This implies

for all p

0 =
n∑
k=0

g(k)

(
n

k

)
pk(1− p)n−k = (1− p)n

n∑
k=0

g(k)

(
n

k

)(
p

1− p

)k
.

Thus a polynomial f(t) =
∑n

k=0 g(k)
(
n
k

)
tk is identically zero for all t. This means every

coefficient is zero, i.e. g(k) = 0 for all k. Hence g = 0.

example: X1, ..., Xn

∼
iid U(0, θ), 0 < θ <∞. Let T (X1, .., Xn) = maxiXi be a statistic. We
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will show it is a complete sufficient statistics for θ. Note that

P (T ≤ t) = P (X1 < t, ..., Xn < t) = P (X1 < t) · · ·P (Xn < t) = tnθ−n, 0 < t < θ

= 1 if t > θ

= 0 if t < 0.

Therefore the density of T is given by f(t|θ) = ntn−1θ−n, 0 < t < θ. Suppose g be a fn. s.t.

Eθ[g(T )] = 0 for all θ. Then

0 =
d

dθ
Eθ[g(T )] =

d

dθ

∫ θ

0

g(t)ntn−1θ−ndt = g(θ)nθn−1θ−n.

Since this is true for all θ, it implies that g = 0.

We are now in a position to discuss when a minimal sufficient statistic is independent of

an ancillary statistic.

Basu’s Theorem: If T (X) is a complete and sufficient statistic, then T (X) is independent

of any ancillary statistic.

Proof (Only for the simple discrete case): Let S(X) be any ancillary statistic. Then

Pθ(S(X) = s) does not depend on θ. Since T (X) is a sufficient statistic hence Pθ(S(X) =

s|T (X) = t) = Pθ(X ∈ {x : S(x) = s}|T (X) = t) is independent of θ. Now

Pθ(S(X) = s) =
∑
t

P (S(X) = s|T (X) = t)Pθ(T (X) = t). (1)

Furthermore since P (S(X) = s) =
∑

t P (S(X) = s)Pθ(T (X) = t), using (1) we have for

g(t) = P (S(X) = s|T (X) = t)− P (S(X) = s),

Eθ[g(T )] = 0 for all θ. Now using completeness of T we obtain P (S(X) = s|T (X) =
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t)− P (S(X) = s) = 0. This proves that T (X) and S(X) are independent.

Basu’s theorem sometimes turns out to be an extremely useful technique. Consider the

following classic examples.

Example 13: Consider X1, ..., Xn ∼ exp(θ), need to find Eθ

[
Xn∑n
i=1Xi

]
. Note that fθ(x) =

1
θ

exp(−x/θ). Therefore X/θ ∼ exp(1) implying that it is scale family. By a previous

example, g(x) = Xn∑n
i=1Xi

= 1∑n
i=1

Xi
Xn

is an ancillary statistic. It is easy to show that T (X) =∑n
i=1Xi is a complete sufficient statistic. Therefore, T (X) and g(X) are independent. Thus

θ = Eθ[Xn] = Eθ[g(X)T (X)] = Eθ[g(X)]Eθ[T (X)] = Eθ[g(X)]nθ.

Hence Eθ[g(X)] = n−1.

Exponential Family

A one parameter exponential family density is given by fθ(x) = h(x)c(θ) exp (w(θ)t(x)).

Exercise: Show how Bin(p), Pois(λ) is a one parameter exponential family.

Now note that

0 =
d

dθ

∫
h(x)c(θ) exp (w(θ)t(x)) dθ

=

∫
h(x) [c′(θ) exp (w(θ)t(x)) + c(θ)w′(θ)t(x) exp (w(θ)t(x))] dθ

=
c′(θ)

c(θ)
+ w′(θ)E[t(X)].

E[t(X)] = − c′(θ)
w′(θ)c(θ)

. Taking derivative one more time we can calculate E[t(X)2], V ar(t(X)).

Similarly one encounters multi-parameter exponential family. A multi-parameter expo-

nential family has density

fθ(x) = h(x)c(θ) exp

(
k∑
i=1

wi(θ)ti(x)

)
.
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Clearly by factorization theorem, (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj)) is sufficient and by the next

theorem it is minimal sufficient.

Remark: It can also be shown that (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj)) is also complete sufficient

statistic if {(w1(θ), ..., wk(θ)) : θ ∈ θ} contains an open set in Rk.

Result borrowed from the Fourier Transformation:

If
∫∞
−∞ · · ·

∫∞
−∞ g(y1, ..., yk) exp(t1y1+· · ·+tkyk)dy1 · · · dyk = 0 for ai < ti < bi for all i = 1, ..., k

then g = 0.

We are going to borrow this result to prove the remark. Note that T (X) = (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj))

is a sufficient statistics for θ. Now E[g(T (X))] = 0 for all θ implies

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(
n∑
j=1

t1(Xj), ...,
n∑
j=1

tk(Xj)) exp(w1(θ)
n∑
j=1

t1(Xj) + · · ·+ wk(θ)
n∑
j=1

tk(Xj)) = 0.

(2)

Now {(w1(θ), ..., wk(θ)) : θ ∈ θ} contains an open set in Rk means it there exist intervals

[ai, bi] in every dimension so that ai < wi(θ) < bi for which (2) holds. By the previous result

we have g = 0.

This if condition is important. For example if X1, ..., Xn ∼ N(θ, θ2). We can’t apply the

theorem here.

Likelihood Principle

The last topic of this chapter is another principle known as the “likelihood principle”. Like-

lihood principle tells us that all the inferences on the parameter should be only based on the

likelihood function. What is a likelihood function? Below we give definition of the likelihood

function.

Definition (Likelihood function): Let fθ(x) be the joint pdf or pmf of the sample

X = (X1, ..., Xn). Then given that X = x is observed, the function of θ defined by
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L(θ|x) = fθ(x) is called the likelihood function.

Likelihood Principle: If x and y are two sample points such that L(θ|x) is proportional

to L(θ|y), that is there exists a constant C(x,y) such that

L(θ|x) = C(x,y)L(θ|y), for all θ,

then the conclusion drawn from x and y should be identical. Note that the constant C(x,y)

may be different for different (x,y) pair, but it does not depend on θ.

Likelihood principle says inference must be fully based on the likelihood. If for two values

θ1, θ2 of θ we have L(θ2|x) = 3L(θ1|x), then θ2 is thrice “probable” as a value of θ. Further

if likelihood principle is true then L(θ2|y) = 3L(θ2|y). Thus whether we observe x,y we

conclude that θ2 is thrice more likely as a value of θ than θ1. According to likelihood principle

the most likely value of θ is the one that maximizes likelihood. This is how likelihood principle

gives rise to the “maximum likelihood estimator”.

However, likelihood principle is quite controversial and it contradicts frequentist inference

in many example. I will show you a very popular one.

example: Let X be the number of success in twelve Bernoulli trial with success prob. θ.

Then X ∼ Bin(12, θ). Suppose we observe 3 successes. Then the likelihood of θ is

L(θ|X = 3) =

(
12

3

)
θ3(1− θ)9.

Let Y be the number of trials required to have 3 successes. Y ∼ NegBin(3, θ). The likelihood

of θ here is

L(θ|Y = 12) =

(
11

2

)
θ3(1− θ)9.

Since the two likelihoods are merely proportional to each other for all θ, therefore likelihood
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principle says we should have the same inference on θ. However, it has been shown that H0 :

θ = 1
2

vs. H1 : θ > 1
2

has p-value of 0.07 in the first case, while 0.03 in the second case. We

will describe more when we study hypothesis testing. Therefore, with standard frequentist

testing procedure, we draw two different conclusions. Therefore, frequentist procedure has

contradiction with the likelihood principle.

Exercise: 6.2, 6.3, 6.5, 6.6, 6.9, 6.10, 6.13, 6.14, 6.16, 6.20, 6.22, 6.30.

1 Techniques to evaluate estimators

In the previous section we studied a few concepts on sufficiency, minimal sufficiency and

completeness. Those are tools to evaluate “how good” is the data reduction achieved by an

estimator and how much information is lost, if any. In this section, we will use these tools

(and introduce some other) to create “optimal” point estimator. First we need a metric

under which we can evaluate any estimator.

Definition (Mean Squared Error): If τ(θ) 6= 0 is a function of θ and T (X) be an

estimator used to estimate τ(θ), then the mean squared error (MSE) of T (X) is given by

Eθ(T (X)− τ(θ))2. Note that,

Eθ(T (X)− τ(θ))2 = Eθ(T (X)− Eθ(T (X)) + Eθ(T (X))− τ(θ))2

= Eθ(T (X)− Eθ(T (X)))2 + 2Eθ((T (X)− Eθ(T (X)))(Eθ(T (X))− τ(θ))) + Eθ(Eθ(T (X))− τ(θ))2

= Eθ(T (X)− Eθ(T (X)))2 + Eθ(Eθ(T (X))− τ(θ))2

= V arθ(T (X)) +Biasθ(T (X))2.

Given any function of θ (say τ(θ)), we would ideally like to obtain an estimator T (X) that

has the lowest MSE, uniformly over all θ. However, this is not possible to achieve. Consider

the estimator T (X) = 10, which is a terrible as an estimator, but when θ = 10, it gives

MSE = 0. Therefore it is not possible to achieve an estimator which is uniformly best across
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θ over all other estimators, in terms of MSE. We restrict the class of estimators among which

we are going to find out estimator with the best MSE. Let

Cτ = {T : Eθ(T (X)) = τ(θ)}

be a class of estimators. Clearly T ∈ Cτ ⇒ Biasθ(T (X)) = 0. We call the class Cτ as

the class of all unbiased estimators of τ(θ). Our aim is to to find an estimator T (X) of

τ(θ) which satisfies the property that given any other unbiased estimator W (X) of τ(θ),

MSEθ(W ) ≥ MSEθ(T ) for all θ. Since, for unbiased estimators MSEθ(T ) = V arθ(T ), it

amounts to finding out an unbiased estimator T s.t V arθ(W ) ≥ V arθ(T ) for all θ. Such an

estimator T is known as the uniform minimum variance unbiased estimator (UMVUE) of

τ(θ). We will see how to find UMVUE for different problems. While doing so, we are going

to use concepts which have been introduced earlier. But first we should answer the question

if such a UMVUE is unique.

Theorem (Uniqueness of UMVUE) If T (X) is the best unbiased estimator of τ(θ), then

T (X) is unique.

Proof: SupposeW (X) be another best unbiased estimator and consider T ∗(X) = T (X)+W (X)
2

.

Note that E[T ∗(X)] = τ(θ), hence T ∗ is unbiased. Also

V arθ(T
∗) = V arθ(

T +W

2
) =

1

4
V arθ(T ) +

1

4
V arθ(W ) +

1

2
Covθ(T,W )

≤ V arθ(
T +W

2
) =

1

4
V arθ(T ) +

1

4
V arθ(W ) +

1

2
[V arθ(T )V arθ(W )]1/2

= V arθ(T ),

where the second step follows from Cauchy-Schwartz inequality and last step follows from

the fact that V arθ(T ) = V arθ(W ) for all θ. If the inequality is strict, then it clearly

gives a contradiction of the fact that T is UMVUE. If the inequality is an equality then

W = a(θ)T + b(θ), by the equality of Cauchy-Schwartz. Thus Covθ(T,W ) = a(θ)V arθ(T ).
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But, step 2 is an equality now, hence Covθ(T,W ) = V arθ(T ) implying that a(θ) = 1. Now

Eθ(T ) = Eθ(W ) implies b(θ) = 0. Hence T = W .

To see when an unbiased estimator is best unbiased, we want to see how can we improve

upon a given unbiased estimator. Suppose T (X) is an unbiased estimator of τ(θ) and U(X)

is an unbiased estimator of 0, i.e. Eθ(T + aU) = τ(θ), this is also unbiased. Now

V arθ(T + aU) = V arθ(T ) + 2aCovθ(T, U) + a2V arθ(U).

Now if for some θ0, Covθ0(T, U) < 0, then we can make 2aCovθ0(T, U) + a2V arθ0(U) < 0 by

choosing a ∈ (0,−2Covθ0(T, U)/V arθ0(U)). Hence T + aU will be a better estimator at θ0

and T cannot be UMVUE. Similarly we can show that if Covθ0(T, U) > 0 then also T cannot

be best unbiased. In fact this observation characterizes an important property of UMVUE.

Theorem: W (X) is the UMVUE for τ(θ) if and only if W is uncorrelated with all un-

biased estimators of 0.

proof: The above argument shows that if W is the UMVUE it must satisfy Covθ(W,U) = 0

for all θ for all unbiased estimator U of 0. Now assume W is uncorrelated to all unbiased

estimators of 0 and let W ′ be any other unbiased estimator of τ(θ). This implies that W is

uncorrelated to W −W ′. Hence

V arθ(W ) = V arθ(W
′) + V arθ(W −W ′).

Hence W is better than W ′.

Note that this result is quite difficult to use in practice. However, it can be used as a

negative result, i.e. if you like to show that some estimator is not UMVUE, just show that

it is correlated to one unbiased estimator of 0.

Example: X ∼ U(θ, θ+ 1). Then E(X − 1
2
) = θ, i.e. X − 1

2
is unbiased. If h is an unbiased
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estimator of 0, then
∫ θ+1

θ
h(x)dx = 0⇒ h(θ + 1)− h(θ) = 0 for all θ. Now h(x) = sin(2πx)

satisfies this and Covθ(X − 1
2
, sin(2πX)) = − cos(2πθ)

2π
6= 0.

The above results are all giving characterizations of UMVUE. Now we will move onto

the task of constructing UMVUE in different problems.

Rao-Blackwell Theorem: Let W be any unbiased estimator of θ. Let T be a sufficient

statistic for θ and φ(T ) = E[W |T ]. Then

(i) φ(T ) is an unbiased estimator of θ.

(ii) V ar(φ(T )) ≤ V ar(W ), with equality holding if and only if φ(T ) = W with prob. 1.

Proof First of all φ(T ) is a statistic (i.e. free of θ) as T is a sufficient statistic. Now,

E(φ(T )) = E[E[W |T ]] = E[W ] = θ. So φ(T ) is unbiased. Also V ar(W ) = V ar(E(W |T )) +

E(V ar(W |T )) = V ar(φ(T )) + E(V ar(W |T )) ≥ V ar(φ(T )).

Example 14: X1, X2, X3 ∼ Bernoulli(p). Lets start with any unbiased estimator, say

W = (X1 +X2)/2. Clearly E(W ) = p, i.e. W is unbiased. We know T =
∑3

i=1 Xi is a suffi-

cient statistic for p. Then φ(T ) = E[W |T ] = T/3 by symmetry. Now, V ar(W ) = p(1−p)/2,

while V ar(φ(T )) = p(1− p)/3.

Given any unbiased estimator, Rao-Blackwell theorem provides a way to improve its MSE

and we proceed towards achieving a UMVUE. But how much conditioning is needed? Is there

any sufficient statistic with which conditioning provides UMVUE. Indeed it is achieved by a

complete sufficient statistics as below.

Theorem (Lehman-Scheffe): Suppose T is complete and sufficient and there exists a

function φ(T ) of T s.t. E[φ(T )] = ψ(θ). Then φ(T ) is UMVUE for ψ(θ).

proof: Let T1 be any other unbiased estimator of ψ(θ). Consider φ1(T ) = E[T1|T ], this is a

statistic and by Rao-Blackwell we have var(φ1(T )) ≤ var(T1). Now E[φ1(T )] = E[φ(T )] =

ψ(θ). By completeness of T , we have φ1(T ) = φ(T ) w.p. 1 for all θ. Hence φ(T ) is the

UMVUE.
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The above theorem gives us a reasonably easy way to find a UMVUE for ψ(θ). We have

two tasks, (a) find a complete sufficient statistics for θ. For exponential family we already

know how to find that, (b) find an unbiased estimator of ψ(θ) as a function of the complete

sufficient statistics. We will see some examples.

Example: Consider X1, ..., Xn ∼ Bernoulli(p). We have already seen that
∑n

i=1Xi is a

complete sufficient statistic. Therefore, T =
∑n

i=1 Xi is UMVUE for p. What is the UMVUE

for p2? Note that T =
∑n

i=1Xi ∼ Bin(n, p). Thus,

E[T (T − 1)] = E[T 2]− E[T ] = V ar(T ) + E[T ]2 − E[T ] = np(1− p) + n2p2 − np = n(n− 1)p2

implying that T (T−1)
n(n−1)

is the UMVUE for p2.

Example: Consider X1, ..., Xn ∼ N(µ, σ2). We already know, (
∑n

i=1Xi,
∑n

i=1X
2
i ) is

complete sufficient. E(
∑n

i=1Xi/n) = µ. Thus
∑n

i=1Xi/n is UMVUE FOR µ. Also

E[
∑n

i=1 X
2
i /n] = µ2 + σ2. Hence

∑n
i=1X

2
i /n is UMVUE for µ2 + σ2.

There is also another technique to find out UMVUE for ψ(θ) using Lehman-Scheffe and

Rao-Blackwell theorem. (a) First find out any unbiased estimator H(X) of ψ(θ), (b) iden-

tify sufficient statistics for θ, (c) Compute E[H(X)|T ] = φ(T ). By Rao Blackwell theorem

φ(T ) is an unbiased estimator of ψ(θ) and a function of the complete sufficient statistics T .

Therefore φ(T ) is UMVUE for ψ(θ). Let us see an example.

Example: X1, ..., Xn ∼ Pois(λ). What is the UMVUE of P (X = 0) = e−λ?

Clearly E[I(X1 = 0)] = P (X1 = 0) = e−λ. We already know T =
∑
Xi ∼ Pois(nλ) is

sufficient for λ. Now

E[I(X1 = 0)|
n∑
i=1

Xi = t] = P (X1 = 0|
n∑
i=1

Xi = t) =
P (X1 = 0,

∑n
i=2 Xi = t)

P (
∑n

i=1Xi = t)
=

e−nλ[(n−1)λ]t

t!
e−nλ[nλ]t

t!

=

(
1− 1

n

)t
.

(
1− 1

n

)∑n
i=1Xi is the UMVUE for e−λ.

Now we are going to see another result that gives us lower bound on the variance of any

unbiased estimator. The theorem is popularly known as the Cramer-Rao Inequality. But
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before that, let us discuss a few concepts which are necessary.

Let λ(x) = log f(x|θ). We call uθ(x) = ∂ log(fθ(x))
∂θ

= score function. Note that

Eθ(uθ(x)) = 0. This can be seen using the fact that

0 =
δ

δθ

∫
fθ(x)dx =

∫
uθ(x)dx = Eθ(uθ(X)) = 0.

We define, Fisher information as I(θ) = E[uθ(X)2] = V ar(uθ(X)). Taking another derivative

w.r.t θ we obtain E[uθ(X)2] = −E[u′θ(X)]. This is true for scalar θ as

0 =
d

dθ

∫
uθfθ(x)dx =

∫
u′θ(x)fθ(x)dx+

∫
uθ(x)

d

dθ
fθ(x)dx

= Eθ(u
′
θ(X)) + Eθ(uθ(X)2).

Information for location family: If X ∼ f(x − θ), f(x) > 0 for all x, then I(θ) =∫∞
−∞

[f ′(x)]2

f(x)
dx.

proof: Note that uθ(x) = δ
δθ

log(f(x−θ)) = −f ′(x−θ). Thus I(θ) =
∫∞
−∞ uθ(x)2f(x−θ)dx =∫∞

−∞
[f ′(x−θ)]2
f(x−θ) dx =

∫∞
−∞

[f ′(x)]2

f(x)
dx.

Remark: When X ∼ 1
b
f
(
x−θ
b

)
, b known, I(θ) = 1

b2

∫∞
−∞

[f ′(x)]2

f(x)
dx. The proof is done in

a similar way.

Information for scale family: If X ∼ 1
θ
f(x/θ), then I(θ) = 1

θ2

∫ [yf ′(y)
f(y)

+ 1
]2

f(y)dy.

proof: uθ(X) = −1/θ2f(x/θ)−x/θ3f ′(x/θ)
1
θ
f(x/θ)

.

I(θ) =

∫ ∞
−∞

uθ(x)2 1

θ
f(x/θ)dx.
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Let y = x/θ ⇒ dx = θdy. Then

I(θ) =

∫ ∞
−∞

[−1/θ2f(y)− y/θ2f ′(y)]2

f(y)2
f(y)dy =

1

θ2

∫ ∞
−∞

[
1 +

yf ′(y)

f(y)

]2

f(y)dy.

Information Inequality: Suppose X ∼ fθ(x) and I(θ) > 0. Let δ(X) be any function of

X with Eθ(δ(X)2) <∞, for which the derivative w.r.t θ of Eθ(δ(X)) exists and can be dif-

ferentiated under the integral sign i.e. d
dθ
Eθ(δ(X)) =

∫
δ(x) d

dθ
fθ(x)dx =

∫
δ(x)uθ(x)fθ(x)dx.

Then

varθ(δ(X)) ≥
[
d
dθ
Eθ(δ(X))

]2
I(θ)

.

Proof: covθ(δ(X), uθ(X))2 ≤ V arθ(uθ(X))V arθ(δ(X)), by Cauchy-Schwartz inequality.

Now covθ(δ(X), uθ(X)) =
∫
δ(x)uθ(x)dx =

∫
δ(x)uθ(x)fθ(x)dx = d

dθ
Eθ(δ(X)). Also V arθ(δ(X)) ≥

[ ddθEθ(δ(X))]
2

I(θ)
.

Suppose a random sample X1, ..., Xn
iid∼ fθ(x). The score function for a random sample

is given by uθ(X) = d
dθ

log[
∏n

i=1 fθ(Xi)] =
∑n

i=1 uθ(Xi). Also Fisher information contained

in X1, ...Xn, denoted by In(θ) is given by In(θ) = V ar[uθ(X)] = V ar[
∑n

i=1 uθ(Xi)] = nI(θ).

Cramer-Rao Inequality: Let X1, ..., Xn be iid from a distribution with pdf or pmf f(x|θ).

Let T (X) be any unbiased estimator of s.t. E[T (X)] = m(θ). Assume that all the regularity

conditions hold then, V ar(T (X)) ≥ [m′(θ)]2

nI(θ)
. When equality holds, T (X) must be of the form

T (X) = m′(θ)
nI(θ)

∑n
i=1 uθ(Xi) +m(θ).

proof: Use Cauchy-Schwartz inequality on to obtain Cov(T (X), uθ(X))2 ≤ V ar[T (X)]V ar[uθ(X)].

Thus V ar[T (X)] ≥ m′(θ)
nI(θ)

with equality holding if and only if T (X) = a(θ)
∑n

i=1 uθ(Xi)+b(θ).

Now E(T (X)) = m(θ) implies b(θ) = m(θ). Also Cov(T (X),
∑n

i=1 uθ(Xi)) = m′(θ) implies
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a(θ) = m′(θ)
nI(θ)

.

Remark: It is very important that the regularity conditions hold. To show this use U(0, θ)

case and show that the lower bound is not satisfied. Let X1, ..., Xn ∼ U(0, θ). Then

d
dθ

log(fθ(x)) = −1/θ, I(θ) = 1/θ2. So, the Cramer-Rao lower bound for the variance of

any unbiased estimator of θ is θ2/n. Note that T (X) = X(n) has expectation E[X(n)) =∫ θ
0
nyn

θn
= n

n+1
θ. Thus (n+1)

n
X(n) is an unbiased estimator of θ. Now V ar( (n+1)

n
X(n)) =

(n+1)2

n2 [ n
n+2

θ2 − ( n
n+1

θ)2] = θ2

n(n+2)
which is lower than the Cramer-Rao inequality.

example: X1, ..., Xn ∼ Pois(λ). log(f(x|λ)) = x log(λ) − λ − log(x!), uλ(x) = x
λ
− 1,

E[uλ(X)2] = 1
λ
. Let m(λ) = λ. Let us see T (X) = λ

n

∑n
i=1

(
Xi−λ
λ

)
+ λ = X̄.

Bottomline is check this quantity and see if it is free of parameters. Then it has to be

UMVUE. Otherwise find out in some other way as discussed before.

Multi-parameter case: When X ∼ fθ(x) where θ = (θ1, ..., θk) we define a score vector

instead of a scalar score. The score vector is defined as uθ(x) = ( δ
δθ1
fθ(x), ...., δ

δθk
fθ(x)). and

the Fisher information matrix is given by I(θ) = ((Iij(θ)))ki,j=1, where Iij(θ) = E[ δ
δθi

log fθ(x) δ
δθj

log fθ(x)].

Information matrix for the location-scale family: Let X ∼ 1
θ2
f(x−θ1

θ2
). It follows from

the previous result that I11(θ) = 1
θ22

∫∞
−∞

[f ′(x)]2

f(x)
dx, I22(θ) = 1

θ22

∫ [yf ′(y)
f(y)

+ 1
]2

f(y)dy. Using

similar trick we can show that I12(θ) = 1
θ22

∫
y [f ′(y)]2

f(y)
dy.

Example: N(µ, σ2), Gamma(α, β).

Multi-parameter Information Inequality: Suppose that I(θ) is positive definite and

αi = δ
δθi
Eθ(δ(X)) exists and differentiation w.r.t θi can be done under integration w.r.t. x.

Then V arθ(δ(X)) ≥ α′I−1(θ)α, where α = (α1, ..., αk).

2 Method for finding estimators

There a number of ways to estimate an unknown parameter or parameters. We will mainly

discuss the following methods.

(i) Method of moments
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