Assignment #3 Problem #2

Given Information:

- $X_1, \ldots, X_n \sim N(\theta, a\theta^2)$
- *a* is a known constant
- θ > 0

Goals:

- Show (\overline{X}, S^2) is a sufficient statistic for θ
- Show the family of distributions is not complete

Work:

$$\begin{split} f_{\theta}(x_{1}, \dots, x_{n}) &= \left(\frac{1}{\sqrt{2\pi(a\theta^{2})^{2}}}\right)^{n} exp\left\{-\frac{\left(\sum_{i=1}^{n} x_{i}^{2} - 2\theta \sum_{i=1}^{n} x_{i} - n\theta^{2}\right)}{2(a\theta^{2})^{2}}\right\} \\ &= \left(\frac{1}{a\theta^{2}\sqrt{2\pi}}\right)^{n} exp\left\{-\frac{1}{2a^{2}\theta^{4}} \sum_{i=1}^{n} x_{i}^{2} + \frac{1}{a^{2}\theta^{3}} \sum_{i=1}^{n} x_{i} - \frac{n}{2a^{2}\theta^{2}}\right\} \end{split}$$

We can see $T(X) = (\sum_{i=1}^{n} x_i^2, \sum_{i=1}^{n} x_i)$ is a two-dimensional sufficient statistic for θ . We also know any one-to-one function composed of sufficient statistics is itself a sufficient statistic. Two such one-to-one functions are \overline{X} and S^2 . Therefore, (\overline{X}, S^2) is a sufficient statistics for θ .

To show (\bar{X}, S^2) is not a complete sufficient statistics, recall that the Normal distribution is of the Exponential Families. Hence, we can identify

$$w_1 = \frac{1}{a^2 \theta^3}$$
 and $w_2 = -\frac{1}{2a^2 \theta^4}$

However, the parameter space (θ^3, θ^4) does not contain a two-dimensional open set. Therefore, (\bar{X}, S^2) is not complete.