Sam Leonard
205B Solutions
HW 1, \#4
Binomial case:
$E\left[e^{t X}\right]=\sum_{i=0}^{n}\binom{n}{x_{i}} p^{x_{i}}(1-p)^{n-x_{i}} e^{t x_{i}}$
$=\sum_{i=0}^{n}\binom{n}{x_{i}}\left(p e^{t}\right)^{x_{i}}(1-p)^{n-x_{i}}$
And by the binomial theorem, we have $E\left[e^{t X}\right]=\phi_{X}(t)=\left(p e^{t}+(1-p)\right)^{n}$
Poisson case:
$E\left[e^{t X}\right]=\sum_{x=0}^{\infty}\left(\frac{e^{-\lambda} \lambda^{x}}{x!}\right)\left(e^{t x}\right)$
$=e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{x}}{x!}$
The sum is in the form of the series expansion for e^{x}. So:
$E\left[e^{t X}\right]=\phi_{X}(t)=e^{-\lambda} e^{\lambda e^{t}}=e^{\lambda e^{t}-\lambda}=e^{\lambda\left(e^{t}-1\right)}$

HW 3, \#8
First find a complete, sufficient statistic:
$f_{\theta}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{2 \theta}\right)^{n}$ when $\theta<x_{i}<\theta$ for all i and 0 otherwise.
If $\max \left|X_{i}\right|<\theta$, we know that $-\theta<x_{i}<\theta$ for all i.
So $f_{\theta}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{2 \theta}\right)^{n} I\left(\max \left|X_{i}\right|<\theta\right)$
$\max \left|X_{i}\right|$ is a sufficient statistic by the Factorization Theorem. Is it complete?
$X_{i} \sim U(-\theta, \theta)$, so $\left|X_{i}\right| \sim U(0, \theta)$.
And then $\operatorname{Pr}\left(\max \left|X_{n}\right| \leq y\right)=\left(\int_{0}^{t} \frac{1}{\theta} d x\right)^{n}=\left(\frac{y}{\theta}\right)^{n}$.
So the distribution of $Y=\max \left|X_{i}\right|$ is $f(y)=\frac{n y^{n-1}}{\theta^{n}}$
Assume $E\left[g_{\theta}(Y)\right]=0$ for all θ and an arbitrary function g.
This means $\int_{0}^{\theta} g(y)^{n y^{n-1}} \frac{\theta^{n}}{d y}=0$ for all θ.
$\Longrightarrow \int_{0}^{\theta} g(y) y^{n-1} d y=0 \forall \theta$
$\Longrightarrow \frac{d}{d \theta} \int_{0}^{\theta} g(y) y^{n-1} d y=0 \forall \theta$
$\Longrightarrow g(\theta) \theta^{n-1}=0 \forall \theta$.
This is true only if $g(\theta)=0$ for all θ. So the statistic $T(\underline{x})=\max \left|X_{i}\right|$ is complete and sufficient.

If we can find a function ϕ such that $E[\phi(T)]=\theta$ then by Lehmann-Scheffe $\phi(T)$ will be UMVUE.
First look at the expected value of T :
$E[T]=\int_{0}^{\theta} y \frac{n y^{n-1}}{\theta^{n}} d y=\frac{n}{\theta^{n}} \int_{0}^{\theta} y^{n} d y=\frac{n}{\theta^{n}}\left[\frac{y^{n+1}}{n+1}\right]_{0}^{\theta}=\frac{n \theta}{n+1}$
So this means if we set $\phi(T)=\frac{n+1}{n} T, E[\phi(T)]=\theta$.
And by Lehmann-Scheffe $\frac{n+1}{n} \max \left|X_{i}\right|$ is the UMVUE of θ.

