Assignment 1

January 12, 2017

1. Let X_{1}, \ldots, X_{n} be iid random variables with continuous cdf F_{X}, and suppose $E\left(X_{i}\right)=\mu$. Define the random variables Y_{1}, \ldots, Y_{n} by $Y_{i}=1$ if $X_{i}>\mu ; Y_{i}=0$ o.w. Find the distribution of $\sum_{i=1}^{n} Y_{i}$.
2. If $X_{i} \sim \operatorname{Binomial}\left(n_{i}, p\right)$ and X_{i} are independent for $i=1, \ldots, k$, find the distribution of $\sum_{i=1}^{k} X_{i}$.
3. A generalization of iid random variables is exchangeable random variables, an idea due to deFinetti (1972). The random variables X_{1}, \ldots, X_{n} are exchangeable if any permutation of any subset of them of size $k(k \leq n)$ has the same distribution. In the exercise we will see an example of random variables that are exchangeable but not iid. Let $X_{i} \mid p \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p), i=1, \ldots, n$ and $p \sim U(0,1)$.

- Show that the marginal distribution of any k of the $X \mathrm{~s}$ is the same as

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\int_{0}^{1} p^{t}(1-p)^{k-t} d p
$$

where $t=\sum_{i=1}^{k} x_{i}$. Argue that the $X \mathrm{~s}$ are exchangeable.

- Show that marginally $P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \neq P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)$. Hence X s are not iid.

4. $X \sim \operatorname{Bibomial}(n, p)$. Find MGF of X. Also find the MGF of X when $X \sim \operatorname{Pois}(\lambda)$.
5. Let $X, Y \stackrel{i i d}{\sim} N(0,1)$ random variables, and define $Z=\min (X, Y)$. Prove that $Z^{2} \sim \chi_{1}^{2}$.
6. Suppose $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$. Find a function of S^{2}, the sample variance, say $g\left(S^{2}\right)$ that satisfies $E\left(g\left(S^{2}\right)\right)=\sigma$. Try $g\left(S^{2}\right)=c \sqrt{S^{2}}$, where c is a constant. Try to find c.
7. X_{1}, \ldots, X_{n} be a random sample from a population with pdf

$$
f_{X}(x)=\left\{\begin{array}{c}
1 / \theta, \text { if } 0<x<\theta \\
0 \text { otherwise }
\end{array}\right.
$$

Let $X_{(1)}<\cdots<X_{(n)}$ be the order statistics. Show that $X_{(1)} / X_{(n)}$ and $X_{(n)}$ are independent random variables.
8. As a generalization of the previous exercise, let X_{1}, \ldots, X_{n} be iid with pdf

$$
f_{X}(x)=\left\{\begin{array}{c}
\frac{a}{\theta^{a}} x^{a-1}, \text { if } 0<x<\theta \\
0 \text { otherwise }
\end{array}\right.
$$

Let $X_{(1)}<\cdots<X_{(n)}$ be the order statistics. Show that $X_{(1)} / X_{(2)}, X_{(2)} / X_{(3)}, \ldots$, $X_{(n-1)} / X_{(n)}$ and $X_{(n)}$ are mutually independent random variables. Find the distribution of them.

