Assignment 6

March 4, 2017

1. Let $X_{1}, \ldots, X_{n} \sim N\left(0, \sigma_{X}^{2}\right)$ and $Y_{1}, \ldots, Y_{m} \sim N\left(0, \sigma_{Y}^{2}\right)$, independent of X's. Define $\lambda=\sigma_{Y}^{2} / \sigma_{X}^{2}$.

- Find a level α LRT of $H_{0}: \lambda=\lambda_{0}$ vs. $H_{1}: \lambda \neq \lambda_{0}$.
- Express the rejection region of LRT in terms of F random variable.
- Find a $1-\alpha$ confidence interval for λ.

2. Let X_{1}, \ldots, X_{n} be independent with p.d.f $f_{X_{i}}(x)=e^{i \theta-x} I_{[i \theta, \infty)}(x)$. Based on $T=$ $\min _{i}\left(X_{i} / i\right)$, find the $1-\alpha$ confidence interval of θ of the form $[T+a, T+b]$ which is of minimum length.
3. Let X_{1}, \ldots, X_{n} be iid $U(0, \theta)$. Let Y be the largest order statistic. Prove that Y / θ is the pivotal quantity and show that the interval $\left\{\theta: y \leq \theta \leq y / \alpha^{1 / n}\right\}$ is the shortest $1-\alpha$ pivotal quantity.
4. X_{1}, \ldots, X_{n} be iid exponential (λ)

- Find a UMP size α hypothesis test of $H_{0}: \lambda=\lambda_{0}$ vs. $H_{1}: \lambda<\lambda_{0}$.
- Find a UMA $1-\alpha$ confidence interval based on inverting the above test. Show that the interval can be expressed as

$$
C^{*}\left(X_{1}, \ldots, X_{n}\right)=\left\{\lambda: 0 \leq \lambda \leq \frac{2 \sum_{i=1}^{n} X_{i}}{\chi_{2 n, \alpha}^{2}}\right\} .
$$

- Find the expected length of $C^{*}\left(X_{1}, \ldots, X_{n}\right)$.

5. Show that if $A\left(\theta_{0}\right)$ is an unbiased level α acceptance region of a test of $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta \neq \theta_{0}$ and $C(\boldsymbol{X})$ is the $1-\alpha$ confidence set formed by inverting the acceptance regions, then $C(\boldsymbol{X})$ is an unbiased $1-\alpha$ confidence set.
6. Let $X \sim \operatorname{Beta}(\theta, 1)$.

- Let $Y=-(\log X)^{-1}$. Evaluate the confidence coefficient of the set $[Y / 2, Y]$.
- Find a pivotal quantity and use it to set up a confidence interval having the same confidence coefficient.
- Compare the two confidence intervals.

7. X_{1}, \ldots, X_{n} be iid observations from an exponential $(\lambda) \operatorname{pdf}, \lambda$ has conjugate prior $I G(a, b)$. Show how to find a $1-\alpha$ Bayes HPD credible set for λ.
8. Let $X \sim f(x)$ where f is a strictly decreasing pdf on $[0, \infty)$. For a fixed value of $1-\alpha$, of all intervals $[a, b]$ that satisfy $\int_{a}^{b} f(x) d x=1-\alpha$, the shortest is obtained by $a=0$ and b s.t. $\int_{0}^{b} f(x) d x=1-\alpha$.
9. Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\theta, \sigma^{2}\right)$.

- Show that the interval $\theta \leq \bar{X}+t_{n-1, \alpha} \frac{s}{\sqrt{n}}$ can be derived by inverting the acceptance region of an LRT.
- Show that the interval is an unbiased interval.

