Assignment 6

March 4, 2017

- 1. Let $X_1, ..., X_n \sim N(0, \sigma_X^2)$ and $Y_1, ..., Y_m \sim N(0, \sigma_Y^2)$, independent of X's. Define $\lambda = \sigma_Y^2 / \sigma_X^2$.
 - Find a level α LRT of $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda \neq \lambda_0$.
 - Express the rejection region of LRT in terms of F random variable.
 - Find a 1α confidence interval for λ .
- 2. Let $X_1, ..., X_n$ be independent with p.d.f $f_{X_i}(x) = e^{i\theta x} I_{[i\theta,\infty)}(x)$. Based on $T = min_i(X_i/i)$, find the 1α confidence interval of θ of the form [T + a, T + b] which is of minimum length.
- 3. Let $X_1, ..., X_n$ be iid $U(0, \theta)$. Let Y be the largest order statistic. Prove that Y/θ is the pivotal quantity and show that the interval $\{\theta : y \leq \theta \leq y/\alpha^{1/n}\}$ is the shortest $1 - \alpha$ pivotal quantity.
- 4. $X_1, ..., X_n$ be iid exponential(λ)
 - Find a UMP size α hypothesis test of $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda < \lambda_0$.
 - Find a UMA 1α confidence interval based on inverting the above test. Show that the interval can be expressed as

$$C^*(X_1, ..., X_n) = \{\lambda : 0 \le \lambda \le \frac{2\sum_{i=1}^n X_i}{\chi^2_{2n,\alpha}}\}.$$

- Find the expected length of $C^*(X_1, ..., X_n)$.
- 5. Show that if $A(\theta_0)$ is an unbiased level α acceptance region of a test of $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ and $C(\mathbf{X})$ is the $1 - \alpha$ confidence set formed by inverting the acceptance regions, then $C(\mathbf{X})$ is an unbiased $1 - \alpha$ confidence set.
- 6. Let $X \sim Beta(\theta, 1)$.
 - Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient of the set [Y/2, Y].
 - Find a pivotal quantity and use it to set up a confidence interval having the same confidence coefficient.
 - Compare the two confidence intervals.
- 7. $X_1, ..., X_n$ be iid observations from an exponential(λ) pdf, λ has conjugate prior IG(a, b). Show how to find a $1 - \alpha$ Bayes HPD credible set for λ .
- 8. Let $X \sim f(x)$ where f is a strictly decreasing pdf on $[0, \infty)$. For a fixed value of 1α , of all intervals [a, b] that satisfy $\int_a^b f(x) dx = 1 \alpha$, the shortest is obtained by a = 0 and b s.t. $\int_0^b f(x) dx = 1 \alpha$.
- 9. Let $X_1, ..., X_n$ be a random sample from $N(\theta, \sigma^2)$.
 - Show that the interval $\theta \leq \bar{X} + t_{n-1,\alpha} \frac{s}{\sqrt{n}}$ can be derived by inverting the acceptance region of an LRT.
 - Show that the interval is an unbiased interval.